, Volume 71, Issue 12, pp 4857–4866 | Cite as

Engineered Stresses for a Functional Si Light Emitter at Bandgap: An Overview

  • S. AbedrabboEmail author
  • N. M. Ravindra
  • A. T. Fiory
Properties of Interfaced Materials and Films


Interfacing various materials results in stresses and strains that typically alter the properties of either or both interfaced surfaces. In this work, we focus on enhanced light emission properties at the bandgap for silicon interfaced with silica or layers of silica and silicon nitride. This discovery is corroborated by several evidences of engineered stresses and strains at the bulk or interface such as implantation and/or diffusion of dopants in silicon and rough silicon surfaces formed by wafer cutting or etching and patterning. Silicon light emitters are being eagerly sought, and upon achieving reasonable efficiencies, they may be at hand soon. The significant investment in Si-photonics by dominant semiconductor players implies that such devices will be welcomed particularly in applications such as optical emitters for next-generation integrated optical circuits and interconnects; all-Si transceivers and cross connects for integrated circuit chips; light-wave components and high-power discrete and array emitters. Engineered stresses and strains modulate the indirect Si bandgap, resulting in enhanced radiative electron–hole recombination, which competes more effectively with non-radiative recombination.


Silicon LED Stresses and strains Photoluminescence Optoelectronics 



Partial support for this project is supplied by Project Contract No. AARE18-064 from the Abu Dhabi Department of Education and Knowledge. Partial support for this project is supplied by Project Contract No. 8474000191 awarded by Khalifa University of Science and Technology. Partial support by the Deanship of Academic Research at the University of Jordan, Project Contract No. 1030, and initial support from the Hamdi Mango Center for Scientific Research (HMCSR) are acknowledged with thanks. The authors acknowledge Drs. Bashar Lahlouh and Sudhakar Shet for their support and interest. The x-ray diffraction data shown in Fig. 2, obtained at the National Renewable Energy Laboratory, were kindly provided by Dr. Shet. The authors are also indebted to Dr. Hieu Nguyen for useful discussions and references.


  1. 1.
    C.G. Dieseldorff, (Semiconductor equipment Trade Group—SEMI), Accessed 17 Sept 2018.
  2. 2.
    Semiconductor Industry Association, 2015 International Technology Roadmap for Semiconductors (ITRS). 05 June 2015.
  3. 3.
    S.M. Sze, Semiconductor Devices Physics and Technology, Chapters 3 and 9, 2nd ed. (Danvers: Wiley, 2002), pp. 47–81.Google Scholar
  4. 4.
    B.E.A. Saleh and M.C. Teich, Fundamental of Photonics, 2nd ed. (New York: Wiley, 2007).Google Scholar
  5. 5.
    A.T. Fiory and N.M. Ravindra, J. Electron. Mater. 32, 1043 (2003).CrossRefGoogle Scholar
  6. 6.
    S. Abedrabbo, B. Lahlouh, and A.T. Fiory, J. Phys. D Appl. Phys. 44, 315401 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Abedrabbo, B. Lahlouh, S. Shet, and A.T. Fiory, Scripta Mater. 65, 767 (2011).CrossRefGoogle Scholar
  8. 8.
    T.M. Parrill, J. Mater. Res. 9, 723 (1994).CrossRefGoogle Scholar
  9. 9.
    P. Innocenzi, J. Non-Cryst. Solids 316, 309 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Abedrabbo, A.T. Fiory, and N.M. Ravindra, JOM 69, 241 (2017).CrossRefGoogle Scholar
  11. 11.
    G. Weiser, S. Kazitsyna-Baranovski, and R. Stangl, J. Mater. Sci.: Mater. Electron. 18, S93 (2007).Google Scholar
  12. 12.
    D. Macdonald, A.-Y. Liu, H.T. Nguyen, S.Y. Lim and F.E. Rougieux, in 31st European Photovoltaic Solar Energy Conference and Exhibition (2015).Google Scholar
  13. 13.
    D.N. Lobanov, A.V. Novikov, N.V. Vostokov, Y.N. Drozdov, A.N. Yablonskiy, Z.F. Krasilnik, M. Stoffel, U. Denker, and O.G. Schmidt, Opt. Mater. 27, 818 (2005).CrossRefGoogle Scholar
  14. 14.
    L. Nataraj, N. Sustersic, M. Coppinger, L.F. Gerlein, J. Kolodzey, and S.G. Cloutier, Appl. Phys. Lett. 96, 121911 (2010).CrossRefGoogle Scholar
  15. 15.
    W.S. Yoo, B.G. Kim, S.W. Jin, T. Ishigaki, and K. Kang, ECS Journal of Solid State Science and Technology 3, N142 (2014).CrossRefGoogle Scholar
  16. 16.
    W.S. Yoo, B.G. Kim, S.W. Jin, T. Ishigakia, and K. Kang, ECS Trans. 61, 161 (2014).CrossRefGoogle Scholar
  17. 17.
    W.S. Yoo, B.G. Kim, S.W. Jin, T. Ishigaki, and K. Kang, ECS J. Solid State Sci. Technol. 4, 76 (2015).CrossRefGoogle Scholar
  18. 18.
    J.G. Kim, J.H. Cho, R.H. Kim, K.S. Cho, C.H. Kang, S.K. Park, T. Ishigaki, K. Kang, and W.S. Yoo, ECS Journal of Solid State Science and Technology 4, P314 (2015).CrossRefGoogle Scholar
  19. 19.
    S.-K.J. Jian, C.-C. Jeng, T.-C. Wang, C.-M. Huang, Y.-L. Wang, and W.S. Yoo, ECS. J. Solid State Sci. Technol. 2, P214 (2013).CrossRefGoogle Scholar
  20. 20.
    N. Yabumoto, K. Mizuno, K. Kitahara, and A. Moritani, Jpn. J. Appl. Phys. 20, 893 (1981).CrossRefGoogle Scholar
  21. 21.
    K. Hashimoto, Jpn. J. Appl. Phys. 33, 6013 (1994).CrossRefGoogle Scholar
  22. 22.
    J.A.R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy, Chapter 1 (New York: Wiley, 1967).Google Scholar
  23. 23.
    S. Xu, C. Qin, L. Diao, D. Gilbert, L. Hou, A. Wiesnoski, E. Busch, R. McGowan, B. White, and F. Weber, J. Vac. Sci. Technol., B 25, 156 (2007).CrossRefGoogle Scholar
  24. 24.
    E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982).CrossRefGoogle Scholar
  25. 25.
    B. L. Sopori and T. Marshall, Photovoltaic Specialists Conference, Conference Record of the Twenty Third IEEE Specialists Conference, pp. 127–132 (Lousiville Ky, May 10–14, 1993).Google Scholar
  26. 26.
    N.M. Ravindra, B. Sopori, O.H. Gokce, S.X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, Intern. J. Thermophys. 22, 1593 (2001).CrossRefGoogle Scholar
  27. 27.
    S. Abedrabbo, J.C. Hensel, A.T. Fiory, B. Sopori, W. Chen, and N.M. Ravindra, Mater. Sci. Semicond. Process. 1, 187 (1998).CrossRefGoogle Scholar
  28. 28.
    A.M. Al-Husseini and B. Lahlouh, J. Applied Sci. 17, 374 (2017).CrossRefGoogle Scholar
  29. 29.
    Private Communications, B. Lahlouh (Amman: The University of Jordan, 2018).Google Scholar
  30. 30.
    S. Abedrabbo, “Thesis” Emissivity Measurements and Modeling of Silicon Related Materials and Structures, August 1998, New Jersey Institute of Technology and Rutgers the State University of New Jersey.Google Scholar
  31. 31.
    E. Yao, G. Kim, B. Piccione, J. Shin, and D. Gianola, Engineering Elastic Strain Gradients to Tune the Electrical Properties of Semiconductors for Thermoelectric Applications. Unpublished Talk presented in TMS 2018 in Phoenix, AZ (2018).Google Scholar
  32. 32.
    D.J. Lockwood, J. Mater. Sci.: Mater. Electron. 20, S235 (2009).Google Scholar
  33. 33.
    R.J. Walters, J. Kalkman, A. Polman, H.A. Atwater, and M.J.A. de Dood, Phys. Rev. B 73, 132302 (2006).CrossRefGoogle Scholar
  34. 34.
    N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalb, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, F. Rocca, and J. Appl, Phys. 101, 113510 (2007).Google Scholar
  35. 35.
    M.J. Chen, J.L. Yen, J.Y. Li, J.F. Chang, S.C. Tsai, and C.S. Tsai, Appl. Phys. Lett. 84, 2163 (2004).CrossRefGoogle Scholar
  36. 36.
    G. Franzò, A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, and F. Priolo, App. Phys. A 74, 1 (2002).CrossRefGoogle Scholar
  37. 37.
    T. Hoang, P. LeMinh, J. Holleman, and J. Schmitz, IEEE Electron Dev. Lett. 28, 383 (2007).CrossRefGoogle Scholar
  38. 38.
    W.L. Ng, M.A. Lourenço, R.M. Gwilliam, S. Ledain, G. Shao, and K.P. Homewood, Nature 410, 192 (2001).CrossRefGoogle Scholar
  39. 39.
    M. Kittler, T. Arguirov, A. Fischer, and W. Seifert, Opt. Mater. 27, 967 (2005).CrossRefGoogle Scholar
  40. 40.
    T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, IEEE Trans. Electron. Devices 54, 1860 (2007).CrossRefGoogle Scholar
  41. 41.
    M. Helm, J.M. Sun, J. Potfajova, S. Winnerl, T. Dekorsy, W. Skorupa, B. Schmidt, and A. Mücklich, Phys. Stat. Sol. (C) 2, 2941 (2005).CrossRefGoogle Scholar
  42. 42.
    M.A. Lourenco and K.P. Homewood, Thin Solid Films 519, 8441 (2011).CrossRefGoogle Scholar
  43. 43.
    M.A. Lourenco, M. Milosavljevic, R.M. Gwilliam, and K.P. Homewood, Appl. Phys. Lett. 87, 201105 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsKhalifa University of Science and TechnologyAbu DhabiUAE
  2. 2.Department of PhysicsThe University of JordanAmmanJordan
  3. 3.Department of PhysicsNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations