Advertisement

JOM

, Volume 71, Issue 12, pp 4817–4828 | Cite as

Mesoscale Modeling of High Burn-Up Structure Formation and Evolution in UO2

  • M. Gomaa AbdoelatefEmail author
  • Fergany Badry
  • Daniel Schwen
  • Cody Permann
  • Yongfeng Zhang
  • Karim Ahmed
Ceramic Materials for Nuclear Energy Applications

Abstract

A phase-field model was developed to simulate the high burn-up structure formation and evolution in UO2. The model takes into account the interfacial energies of grain boundaries and bubble surfaces, the strain energy associated with dislocations, and the chemical energy of gas atoms. This enables the model to simulate the formation and growth of sub-grains and bubbles in a self-consistent manner. The model results demonstrate strong effects of dislocation density (its magnitude and distribution), grain boundary energy, and bubble radius and number density on the formation of the sub-grains. For polycrystalline UO2, the model predicts the average size of the recrystallized grains to lie within the range of 0.3–0.5 µm corresponding to a dislocation density range of \( \rho = (2.5 \times 10^{15} - 2.65 \times 10^{15} ) \;{\text{m}}^{ - 2} \) or equivalent to 70–75 GWd/tHM burn-up. These predictions agree reasonably well with data reported in the literature.

Notes

Acknowledgements

The authors from Texas A&M University would like to acknowledge the support from a start-up Grant from Texas A&M University and a faculty development Grant from the Nuclear Regulatory Commission (NRC-HQ-84-16-G-0009). The authors from Idaho National Laboratory acknowledge the support from the Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. Portions of this research were conducted with the advanced computing resources provided by Texas A&M High Performance Research Computing.

References

  1. 1.
    T. Wiss and V.V. Rondinella, Mater. Today. 13, 24 (2010).Google Scholar
  2. 2.
    K. Nogita, K. Une, M. Hirai, K. Ito, K. Ito, and Y. Shirai, J. Nucl. Mater. 248, 196 (1997).CrossRefGoogle Scholar
  3. 3.
    J. Spino, K. Vennix, and M. Coquerelle, J. Nucl. Mater. 231, 179 (1996).CrossRefGoogle Scholar
  4. 4.
    J. Noirot, L. Desgranges, and J. Lamontagne, J. Nucl. Mater. 372, 318 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Matzke and M. Kinoshita, J. Nucl. Mater. 247, 108 (1997).CrossRefGoogle Scholar
  6. 6.
    K. Nogita and K. Une, J. Nucl. Mater. 226, 302 (1995).CrossRefGoogle Scholar
  7. 7.
    X.-M. Bai, M.R. Tonks, Y. Zhang, and J.D. Hales, J. Nucl. Mater. 470, 208 (2016).CrossRefGoogle Scholar
  8. 8.
    K. Ahmed, X. Bai, Y. Zhang, B. Biner, Report No. 40046 Rev.0, (Idaho National Laboratory, Idaho, 2016)Google Scholar
  9. 9.
    N. Moelans, B. Blanpain, and P. Wollants, Calphad. 32, 268 (2008).CrossRefGoogle Scholar
  10. 10.
    M.R. Tonks, A. Cheniour, and L. Aagesen, Comput. Mater. Sci. 147, 353 (2018).CrossRefGoogle Scholar
  11. 11.
    P.C. Millett, A. El-Azab, S. Rokkam, M. Tonks, and D. Wolf, Comput. Mater. Sci. 50, 949 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Li, H. Shenyang, X. Sun, and M. Stan, Comput. Mater. 3, 16 (2017).CrossRefGoogle Scholar
  13. 13.
    K. Ahmed and A. El-Azab, Phase-field modeling of microstructure evolution in nuclear materials.Handbook of Materials Modeling, ed. W. Andreoni and S. Yip (Cham: Springer, 2018),Google Scholar
  14. 14.
    L. Liang, Z.-G. Mei, Y.S. Kim, B. Ye, G. Hofman, M. Anitescu, and A.M. Yacout, Comput. Mater. Sci. 124, 228 (2016).CrossRefGoogle Scholar
  15. 15.
    L. Liang, Z.-G. Mei, and A.M. Yacout, Comput. Mater. Sci. 138, 16 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Rest, J. Nucl. Mater. 326, 175 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Kinoshita, J. Nucl. Mater. 248, 185 (1997).CrossRefGoogle Scholar
  18. 18.
    X. Donghua, B.D. Wirth, and F. Sci, Techol. 56, 1064 (2009).Google Scholar
  19. 19.
    M. Li, M.A. Kirk, P.M. Baldo, D. Xu, and B.D. Wirth, Philos. Mag. 92, 2048 (2012).CrossRefGoogle Scholar
  20. 20.
    K. Elder and N. Provatas, Phase-Field Methods in Materials Science and Engineering, 1st ed. (Weinheim: Wiley, 2010), pp. 143–163.Google Scholar
  21. 21.
    P. Wollants, N. Moelans, and B. Blanpain, Phys. Rev. B 78, 024113 (2008).CrossRefGoogle Scholar
  22. 22.
    N. Moelans, A. Godfrey, Y. Zhang, and D.J. Jensen, Phys. Rev. B 88, 054103 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Plapp, Phys. Rev. B 84, 031601 (2011).CrossRefGoogle Scholar
  24. 24.
    N. Moelans, Acta Mater. 59, 1077 (2011).CrossRefGoogle Scholar
  25. 25.
    L.K. Aagesen, Y. Gao, D. Schwen, and K. Ahmed, Phys. Rev. E 98, 023309 (2018).CrossRefGoogle Scholar
  26. 26.
    K. Ahmed, J. Pakarinen, T. Allen, and A. El-Azab, J. Nucl. Mater. 446, 90 (2014).CrossRefGoogle Scholar
  27. 27.
    K. Ahmed, C.A. Yablinsky, A. Schulte, T. Allen, and A. El-Azab, Mod. Sim. Mater. Sci. Eng. 21, 23 (2013).CrossRefGoogle Scholar
  28. 28.
    P.V. Nerikar, K. Rudman, and T.G. Desai, J. Am. Ceram. Soc. 94, 1893 (2011).CrossRefGoogle Scholar
  29. 29.
    H. Matzke and T. Inoue, J. Nucl. Mater. 91, 205 (1980).CrossRefGoogle Scholar
  30. 30.
    J.B. Ainscough, B.W. Oldfield, and J.O. Ware, J. Nucl. Mater. 49, 117 (1973).CrossRefGoogle Scholar
  31. 31.
    C.J. Permann, M.R. Tonks, B. Fromm, and D.R. Gaston, Comput. Mater. Sci. 115, 18 (2016).CrossRefGoogle Scholar
  32. 32.
    K. Ahmed, M. Tonks, Y. Zhang, B. Biner, and A. El-Azab, Comput. Mater. Sci. 134, 25 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Xiao, C. Long, and H. Chen, J. Nucl. Mater. 471, 74 (2016).CrossRefGoogle Scholar
  34. 34.
    K. Une, K. Nogita, S. Kashibe, and M. Imamura, J. Nucl. Mater. 188, 65 (1992).CrossRefGoogle Scholar
  35. 35.
    R. Bullafi, W. Carter, and S. Allen, Kinetics of Materials, 1st ed. (Cambridge: Wiley, 2005), pp. 459–485.CrossRefGoogle Scholar
  36. 36.
    L.K. Aagesen, D. Schwen, K. Ahmed, and M. Tonks, Comput. Mater. Sci. 140, 10 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Nuclear Engineering DepartmentTexas A&M UniversityCollege StationUSA
  2. 2.Fuel Modeling and Simulation DepartmentIdaho National LaboratoryIdaho FallsUSA
  3. 3.Department of Engineering PhysicsUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations