Advertisement

JOM

, Volume 71, Issue 12, pp 4447–4456 | Cite as

End-of-Life Lithium-Ion Battery Component Mechanical Liberation and Separation

  • Haruka Pinegar
  • York R. SmithEmail author
Extraction and Recycling of Battery Materials
  • 83 Downloads

Abstract

Effective mechanical treatment of end-of-life lithium-ion batteries (LIBs) to recover a high yield of enriched active electrode materials (i.e., lithium metal oxide and graphite) is key to achieving a robust LIB recycling process. In this study, shredding and sieving were performed on LIB packs of three cell types (prismatic, cylindrical, and pouch cells) to investigate the separation and liberation of LIB components. The results demonstrated that a significant portion of lithium metal oxide remained unliberated from the aluminum foil after shredding. Of the physical liberation methods investigated, it was shown that attrition milling of shredded LIB packs effectively separated LIB components, and enriched active materials, metal foils and low-value components into < 500 μm, 500 μm to 2 mm, and > 2 mm fractions, respectively. A combination of shredding, sieving, and attrition milling was demonstrated to be a promising mechanical/physical method for liberation and beneficiation of LIB components.

Notes

Acknowledgements

The authors would like to thank Ruben Ochoa for assistance with equipment fabrication, mechanical experiments, and material analysis related to this work. The University of Utah Waste Management Center provided batteries for this study.

Supplementary material

11837_2019_3828_MOESM1_ESM.pdf (754 kb)
Supplementary material 1 (PDF 753 kb)

References

  1. 1.
    C. Curry, Lithium-Ion Battery Costs and Market (2017). https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-batterycosts-and-market.pdf. Accessed 18 August 2019.
  2. 2.
    C. Helbig, A.M. Bradshaw, L. Wietschel, A. Thorenz, and A. Tuma, J. Clean. Prod. 172, 274 (2018).CrossRefGoogle Scholar
  3. 3.
    B. Moradi and G.G. Botte, J. Appl. Electrochem. 46, 123 (2016).CrossRefGoogle Scholar
  4. 4.
    D.H.P. Kang, M. Chen, and O.A. Ogunseitan, Environ. Sci. Technol. 47, 5495 (2013).CrossRefGoogle Scholar
  5. 5.
    X. Zeng, J. Li, and N. Singh, Crit. Rev. Environ. Sci. Technol. 44, 1129 (2014).CrossRefGoogle Scholar
  6. 6.
    F. Larsson, P. Andersson, P. Blomqvist, and B.E. Mellander, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    D.A. Notter, M. Gauch, R. Widmer, P. Wager, A. Stamp, R. Zah, and H.-J. Althaus, Environ. Sci. Technol. 44, 6550 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, and K. Vandeputte, Resour. Conserv. Recycl. 54, 229 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Heelan, E. Gratz, Z. Zheng, Q. Wang, M. Chen, D. Apelian, and Y. Wang, JOM 68, 2632 (2016).CrossRefGoogle Scholar
  10. 10.
    F. Gu, J. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, and P. Hall, J. Clean. Prod. 161, 765 (2017).CrossRefGoogle Scholar
  11. 11.
    D. Cheret and S. Santen, U.S. Patent No. 7,169,206 (2007).Google Scholar
  12. 12.
    F. Saloojee and J. Lloyd, Lithium Battery Recycling Process. Department of Environmental Affairs Development Bank of South Africa (Project No. DB-074 (RW1/1016)) (2015).Google Scholar
  13. 13.
    T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, J. Power Sources 207, 173 (2012).CrossRefGoogle Scholar
  14. 14.
    B. Yazicioglu and J. Tytgat, DG Environment–Stakeholder Meeting, (Umicore, 2011). https://ec.europa.eu/environment/waste/batteries/pdf/umicore_pres_18072011.pdf. Accessed 12 Mar 2018.
  15. 15.
    A. Sonoc, J. Jeswiet, and V.K. Soo, Proc. CIRP 29, 752 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Zhang, Y. He, F. Wang, L. Ge, X. Zhu, and H. Li, Waste Manag 34, 1051 (2014).CrossRefGoogle Scholar
  17. 17.
    J. Diekmann, C. Hanisch, L. Froböse, G. Schälicke, T. Loellhoeffel, A.-S. Fölster, and A. Kwade, J. Electrochem. Soc. 164, A6184 (2016).CrossRefGoogle Scholar
  18. 18.
    F. Pagnanelli, E. Moscardini, P. Altimari, T. Abo Atia, and L. Toro, Waste Manag 60, 706 (2017).CrossRefGoogle Scholar
  19. 19.
    S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, and Y.H. Kim, Hydrometallurgy 79, 172 (2005).CrossRefGoogle Scholar
  20. 20.
    X. Wang, G. Gaustad, and C.W. Babbitt, Waste Manag 51, 204 (2016).CrossRefGoogle Scholar
  21. 21.
    L. Wuschke, H. Jäckel, T. Leißner, and U.A. Peuker, Waste Manag 85, 317 (2019).CrossRefGoogle Scholar
  22. 22.
    T. Boundy, M. Boyton, and P. Taylor, J. Clean. Prod. 154, 436 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Li, P. Shi, Z. Wang, Y. Chen, and C.C. Chang, Chemosphere 77, 1132 (2009).CrossRefGoogle Scholar
  24. 24.
    L. Li, L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, J. Power Sources 262, 380 (2014).CrossRefGoogle Scholar
  25. 25.
    L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Waste Manag 46, 523 (2015).CrossRefGoogle Scholar
  26. 26.
    C.G. Barlowz, Electrochem. Solid-State Lett. 2, 362 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations