Advertisement

JOM

, Volume 71, Issue 12, pp 4940–4943 | Cite as

Nucleation of Co3C Magnetic Nanoparticles Using Supercritical Condition of Ethanol

  • Eduardo Martinez-Teran
  • Anson K. Cordeiro
  • Ahmed A. El-GendyEmail author
Technical Article
  • 57 Downloads

Abstract

Co3C magnetic nanoparticles have been synthesized using supercritical conditions of ethanol. The phase structure of the samples has shown two phases of orthorhombic Co3C and Co structures. The morphology of the prepared nanoparticles reveals a spherical-like shape. Tailoring the synthesis parameters has led to controlling the magnetic properties depending on the ratio of Co3C:Co in the samples. The magnetic properties of the samples have been measured, revealing ferromagnetic behavior. The data yield coercivity (HC) was of 600–950 Oe and saturation magnetization (MS) of 20–38 emu/g. The results present alternative approach to nucleate Co3C magnetic nanoparticles. The synthesis method will be optimized in the future to produce a pure Co3C phase structure.

Notes

Acknowledgements

The authors acknowledge the start-up fund of AAE as well as the rising-stars fund from University of Texas El Paso.

References

  1. 1.
    R. Madugundo, N.V. Rama Rao, A.M. Schoenhoebel, D. Salazar, and A.A. El-Gendy, Magnetic Nanostructured Materials: From lab. to fab, ed. A.A. El-Gendy, J.M. Brandiaran, and R.L. Hadimani (Amsterdam: Elsevier, 2018), p. 157.CrossRefGoogle Scholar
  2. 2.
    T. Mishima, Stahl Eisen 53, 79 (1931).Google Scholar
  3. 3.
    R.A. McCurrie, Ferromagnetic Materials, ed. E.P. Wohlfarth (Amsterdam: Elsevier, 1982), p. 107.Google Scholar
  4. 4.
    G.C. Hadjipanayis, R.C. Hazelton, and K.R. Lawless, Appl. Phys. Lett. 43, 797 (1983).CrossRefGoogle Scholar
  5. 5.
    J.J. Croat, J.F. Herbst, R.W. Lee, and F.E. Pinkerton, Appl. Phys. Lett. 44, 148 (1984).CrossRefGoogle Scholar
  6. 6.
    J.J. Croat, J.F. Herbst, R.W. Lee, and F.E. Pinkerton, J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
  7. 7.
    M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).CrossRefGoogle Scholar
  8. 8.
    A.A. El-Gendy, T. Almugaiteeb, and E.E. Carpenter, J. Magn. Magn. Mater. 348, 136 (2013).CrossRefGoogle Scholar
  9. 9.
    A.A. El-Gendy, M. Qian, Z.J. Huba, S.N. Khanna, and E.E. Carpenter, Appl. Phys. Lett. 104, 02311 (2014).CrossRefGoogle Scholar
  10. 10.
    A.A. El-Gendy, M. Bertino, M. Qian, D. Clifford, S. Khanna, and E.E. Carpenter, Appl. Phys. Lett. 106, 213109 (2015).CrossRefGoogle Scholar
  11. 11.
    B. Williams, A.A. El-Gendy, and E.E. Carpenter, J. Mag. Mag. Mater. 444, 332 (2017).CrossRefGoogle Scholar
  12. 12.
    B. Leszczynski, G.C. Hadjipanayis, A.A. El-Gendy, K. Załęski, Z. Śniadecki, A. Musiał, M. Jarek, S. Jurga, and A. Skumiel, J. Mag. Mag. Mater. 416, 269 (2016).CrossRefGoogle Scholar
  13. 13.
    A.A. El-Gendy and G.C. Hadjipanayis, IEEE Trans. Magn. 50, 1 (2014).CrossRefGoogle Scholar
  14. 14.
    A.A. El-Gendy and G.C. Hadjipanayis, J. Phys. D 48, 125001 (2015).CrossRefGoogle Scholar
  15. 15.
    A.A. El-Gendy and G.C. Hadjipanayis, J. Phys. Chem. C 119, 8898 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations