Advertisement

JOM

, Volume 71, Issue 12, pp 4608–4615 | Cite as

Selective Removal of Iron from Acid Leachate of Red Mud by Aliquat 336

  • Xuekai Zhang
  • Kanggen Zhou
  • Qingyuan Lei
  • Ying Huang
  • Changhong Peng
  • Wei ChenEmail author
Rare Metal Recovery from Secondary Resources
  • 63 Downloads

Abstract

Extraction of valuable rare-earth elements (REEs) from red mud is important for both resource recovery and waste treatment of red mud. However, the Fe present in red mud makes the extraction of REEs unsatisfactory, because Fe(III) is co-extracted and is difficult to remove. In this study, the feasibility and mechanism of selective removal of Fe from the acid leachate of red mud using Aliquat 336 were investigated. According to the theoretical calculation, Fe(III) mainly existed as FeCl3 species in a wide range of chloride concentrations, and the concentration of FeCl4 species significantly increased with chloride concentration. The extraction studies show that the chloride concentration strongly affects the extraction of Fe. The Fe removal efficiency is > 98% when the chloride concentration is 2.65 mol L−1, while the loss of REEs is < 7%. Dilute HCl acid was selected as the stripping agent; the stripping efficiency of Fe in one stripping stage reached > 90% under the optimal conditions.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21707167) and the Fundamental Research Funds for the Central Universities of Central South University.

References

  1. 1.
    S.G. Xue, F. Zhu, X.F. Kong, C. Wu, L. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Res. 23, 1120 (2016).Google Scholar
  2. 2.
    K.G. Zhou, C.Y. Teng, X.K. Zhang, C.H. Peng, and W. Chen, Hydrometallurgy 182, 57 (2018).Google Scholar
  3. 3.
    X.F. Kong, Y. Guo, S.G. Xue, W. Hartley, C. Wu, Y.Z. Ye, and Q.Y. Cheng, J. Clean. Prod. 143, 224 (2017).Google Scholar
  4. 4.
    S.G. Xue, Y.J. Wu, Y.W. Li, X.F. Kong, F. Zhu, W. Hartley, X.F. Li, and Y.Z. Ye, J. Cent. South Univ. 26, 268 (2019).Google Scholar
  5. 5.
    K. Evans, J. Sustain. Metall. 2, 316 (2016).Google Scholar
  6. 6.
    X.K. Zhang, K.G. Zhou, W. Chen, Q.Y. Lei, Y. Huang, and C.H. Peng, J. Cent. South Univ. 26, 458 (2019).Google Scholar
  7. 7.
    G. Power, M. Gräfe, and C. Klauber, Hydrometallurgy 108, 33 (2011).Google Scholar
  8. 8.
    C. Klauber, M.G. Fe, and G. Power, Hydrometallurgy 108, 11 (2011).Google Scholar
  9. 9.
    S.G. Xue, X.F. Kong, F. Zhu, W. Hartley, and X.F. Li, Environ. Sci. Pollut. Res. 23, 12822 (2016).Google Scholar
  10. 10.
    X.F. Kong, T. Tian, S.G. Xue, W. Hartley, L.B. Huang, C. Wu, and C.X. Li, Land Degrad. Dev. 29, 1 (2017).Google Scholar
  11. 11.
    É. Ujaczki, Y.S. Zimmermann, C.A. Gasser, M. Molnár, V. Feigl, and M. Lenz, J. Chem. Technol. Biotechnol. 92, 2835 (2017).Google Scholar
  12. 12.
    Abhilash, S. Sinha, M.K. Sinha, and B.D. Pandey, Int. J. Miner. Process. 127, 70 (2014).Google Scholar
  13. 13.
    Y.J. Liu and R. Naidu, Waste Manag. 34, 2662 (2014).Google Scholar
  14. 14.
    K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, and Y. Pontikes, J. Clean. Prod. 99, 17 (2015).Google Scholar
  15. 15.
    Z.B. Liu, H.X. Li, Q.K. Jing, and M.M. Zhang, JOM 69, 2373 (2017).Google Scholar
  16. 16.
    J. Demol, E. Ho, and G. Senanayake, Hydrometallurgy 179, 254 (2018).Google Scholar
  17. 17.
    J. Demol, E. Ho, K. Soldenhoff, and G. Senanayake, Hydrometallurgy 188, 123 (2019).Google Scholar
  18. 18.
    C. Xiao, M.T. Tang, S.H. Yang, and Q. Li, J. Cent. South Univ. (Sci. Technol.) 38, 663 (2007).Google Scholar
  19. 19.
    Q.F. Wei, X.L. Ren, J.J. Guo, and Y.X. Chen, J. Hazard. Mater. 304, 1 (2016).Google Scholar
  20. 20.
    Y.F. Chang, X.J. Zhai, B.C. Li, and Y. Fu, Hydrometallurgy 101, 84 (2010).Google Scholar
  21. 21.
    G.H. Li, M.X. Liu, M.J. Rao, T. Jiang, J.Q. Zhuang, and Y.B. Zhang, J. Hazard. Mater. 280, 774 (2014).Google Scholar
  22. 22.
    X.B. Li, W. Xiao, W. Liu, G.H. Liu, Z.H. Peng, Q.S. Zhou, and T.G. Qi, Trans. Nonferrous Metal. Soc. 19, 1342 (2009).Google Scholar
  23. 23.
    C.M. Mirea, I. Diaconu, E.A. Serban, E. Ruse, and G. Nechifor, Rev. Chim. (Bucharest, Rom.) 67, 838 (2016).Google Scholar
  24. 24.
    G.Z. Zhang, D.S. Chen, G.Y. Wei, H.X. Zhao, L.N. Wang, T. Qi, F.C. Meng, and L. Meng, Sep. Purif. Technol. 150, 132 (2015).Google Scholar
  25. 25.
    J.S. Liu, X.Z. Gao, C. Liu, L. Guo, S.X. Zhang, X.Y. Liu, H.M. Li, C.P. Liu, and R.C. Jin, Hydrometallurgy 137, 140 (2013).Google Scholar
  26. 26.
    H.K. Haghighi, M. Irannajad, A. Fortuny, and A.M. Sastre, Hydrometallurgy 175, 164 (2018).Google Scholar
  27. 27.
    N. Devi, T. Nonferr. Metal. Soc. 26, 874 (2016).Google Scholar
  28. 28.
    J. Bjerrum and I. Lukeš, Acta Chem. Scand. A 40, 31 (1986).Google Scholar
  29. 29.
    M.S. Lee and K.J. Lee, Hydrometallurgy 80, 163 (2005).Google Scholar
  30. 30.
    C.Y. Teng, K.G. Zhou, L.F. Ning, C.H. Peng, and D.W. He, Chin. J. Environ. Eng. 12, 310 (2018).Google Scholar
  31. 31.
    P.S. Hill, E.A. Schauble, A. Shahar, E. Tonui, and E.D. Young, Geochim. Cosmochim. Acta 73, 2366 (2009).Google Scholar
  32. 32.
    P.S. Hill, E.A. Schauble, and E.D. Young, Geochim. Cosmochim. Acta 74, 6669 (2010).Google Scholar
  33. 33.
    G.X. Xu and C.Y. Yuan, Solvent Extraction of Rare Earth Elements (Beijing: Science Press, 1987), pp. 27–28.Google Scholar
  34. 34.
    C.T. Horovitz, K.A. Gschneidner, G.A. Melson, D.H. Youngblood, and H.H. Schock, Scandium: Its Occurrence, Chemistry Physics, Metallurgy, Biology and Technology (New York: Academic Press, 1975), pp. 126–128.Google Scholar
  35. 35.
    N.A. Lange and J.A. Dean, Lange’s Handbook of Chemistry, 16th ed. (New York: McGraw-Hill, 2005), pp. 687–688.Google Scholar
  36. 36.
    X.Y. Zhang, P.G. Ning, W.F. Xu, H.B. Cao, and Y. Zhang, Sci. China Chem. 59, 497 (2016).Google Scholar
  37. 37.
    A. Lassin, C. Christov, L. Andre, and M. Azaroual, Am. J. Sci. 315, 204 (2015).Google Scholar
  38. 38.
    K.H. Lum, G.W. Stevens, J.M. Perera, and S.E. Kentish, Hydrometallurgy 133, 64 (2013).Google Scholar
  39. 39.
    Y.G. Li and J.F. Lu, Electrolyte Solution Theories (Beijing: Tsinghua University Press, 2005), pp. 86–91.Google Scholar
  40. 40.
    L. Cui, F.Q. Cheng, and J.F. Zhou, Ind. Eng. Chem. Res. 54, 7534 (2015).Google Scholar
  41. 41.
    I.S. Ei-Yamani and E. Shabana, Transit. Met. Chem. 9, 199 (1984).Google Scholar
  42. 42.
    Y. Yang, B.Y. Xie, R.X. Wang, S.M. Xu, J.L. Wang, and Z.H. Xu, Hydrometallurgy 164, 97 (2016).Google Scholar
  43. 43.
    A. Keshav, K.L. Wasewar, and S. Chand, Ind. Eng. Chem. Res. 48, 888 (2009).Google Scholar
  44. 44.
    R.N. Collins, K.M. Rosso, A.L. Rose, C.J. Glover, and T.D. Waite, Geochim. Cosmochim. Acta 177, 150 (2016).Google Scholar
  45. 45.
    H. Nuzahat and W. Chen, Sci. Total Environ. 643, 479 (2018).Google Scholar
  46. 46.
    W. Chen, C. Qian, K.G. Zhou, and H.Q. Yu, Chemistry 4, 1 (2018).Google Scholar
  47. 47.
    Y. Chen, W. Chen, Q.Z. Chen, C.H. Peng, D.W. He, and K.G. Zhou, Water Sci. Technol. 79, 126 (2019).Google Scholar
  48. 48.
    H.M. Cui, J. Chen, H.L. Yang, W. Wang, Y. Liu, D. Zou, W.G. Liu, and G.P. Men, Chem. Eng. J. 232, 372 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations