Advertisement

JOM

, Volume 71, Issue 12, pp 4483–4491 | Cite as

Carbothermal Reduction of Spent Mobile Phones Batteries for the Recovery of Lithium, Cobalt, and Manganese Values

  • Sanjay Pindar
  • Nikhil DhawanEmail author
Extraction and Recycling of Battery Materials
  • 115 Downloads

Abstract

Lithium-ion batteries have a limited lifespan and ever-growing demand and the presence of critical metals such as lithium and cobalt make their recycling inevitable. In this study, discarded mixed mobile batteries were discharged, dismantled, and separated into cathode and anode sheets, followed by attritor crushing. The cathode material comprises LiCoO2 and LiMn2O4, while graphite is present in the anode material. The cathode material was indigenously reduced with purified graphite in a muffle furnace at different times and dosages. A Taguchi statistical design is employed for the optimization of reduction parameters and the obtained magnetic fraction contains cobalt and manganese oxide, whereas graphite and lithium carbonate were found in a nonmagnetic fraction and dried solution. The composition, saturation magnetization and product phases obtained in optimum conditions (900°C, 7.5% graphite, 45 min and 800°C, 7.5% graphite, 45 min) are: Co: ~ 80 to 84%; Mn: 6–10%; and saturation magnetization: 105–114 emu/g with Co, CoO and MnO phases, respectively.

Notes

Acknowledgements

The authors would like to thank and acknowledge the funding received from the Indian Institute of Technology, Roorkee under Faculty Initiation Grant; FIG-100714, and Rahul Singh for meaningful discussions and raw material preparation.

References

  1. 1.
    P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgy 150, 192 (2014).CrossRefGoogle Scholar
  2. 2.
    Indian Bureau of Mines, Indian Minerals Yearbook, (Part-II: Metals & Alloys) 52 Cobalt.Google Scholar
  3. 3.
    J. Li, G. Wang, and Z. Xu, J. Hazard. Mater. 302, 97 (2016).CrossRefGoogle Scholar
  4. 4.
    S.R. Sunil, S. Vishvakarma, A. Barnwal, and N. Dhawan, JOM (2019).  https://doi.org/10.1007/s11837-019-03540-6.CrossRefGoogle Scholar
  5. 5.
    T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, J. Power Sources 207, 173 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Hu, J. Zhang, H. Li, Y. Chen, and C. Wang, J. Power Sources 351, 192 (2017).CrossRefGoogle Scholar
  7. 7.
    F. Wang, T. Zhang, Y. He, Y. Zhao, S. Wang, G. Zhang, and Y. Feng, J. Clean. Prod. 185, 646 (2018).CrossRefGoogle Scholar
  8. 8.
    W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, and Z. Sun, J. Clean. Prod. 178, 833 (2018).CrossRefGoogle Scholar
  9. 9.
    Q. Meng, Y. Zhang, and P. Dong, J. Clean. Prod. 180, 64 (2018).CrossRefGoogle Scholar
  10. 10.
    Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, and S. Yang, Waste Manag. 75, 469 (2018).CrossRefGoogle Scholar
  11. 11.
    L. Li, W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, J. Power Sources 282, 544 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Li, Y. Bian, X. Zhang, Y. Guan, E. Fan, F. Wu, and R. Chen, Waste Manag. 71, 362 (2018).CrossRefGoogle Scholar
  13. 13.
    X. Chen, H. Ma, C. Luo, and T. Zhou, J. Hazard. Mater. 326, 77 (2017).CrossRefGoogle Scholar
  14. 14.
    P. Meshram, B.D. Pandey, and T.R. Mankhand, Chem. Eng. J. 281, 418 (2015).CrossRefGoogle Scholar
  15. 15.
    X. Zeng, J. Li, and B. Shen, J. Hazard. Mater. 295, 112 (2015).CrossRefGoogle Scholar
  16. 16.
    W. Lv, Z. Wang, H. Cao, X. Zheng, W. Jin, Y. Zhang, and Z. Sun, Waste Manag. 79, 545 (2018).CrossRefGoogle Scholar
  17. 17.
    P. Meshram, B.D. Pandey, T.R. Mankhand, and H. Deveci, J. Ind. Eng. Chem. 43, 117 (2016).CrossRefGoogle Scholar
  18. 18.
    L. Yun, D. Linh, L. Shui, X. Peng, A. Garg, M.L.P. Le, and J. Sandoval, Resour. Conserv. Recycl. 136, 198 (2018).CrossRefGoogle Scholar
  19. 19.
    G.P. Nayaka, K.V. Pai, G. Santhosh, and J. Manjanna, Hydrometallurgy 161, 54 (2016).CrossRefGoogle Scholar
  20. 20.
    E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Hydrometallurgy 167, 66 (2017).CrossRefGoogle Scholar
  21. 21.
    P. Liu, L. Xiao, Y. Tang, Y. Chen, L. Ye, and Y. Zhu, J. Therm. Anal. Calorim. 136, 1323 (2018).CrossRefGoogle Scholar
  22. 22.
    S.P. Barik, G. Prabaharan, and B. Kumar, Waste Manag. 51, 222 (2016).CrossRefGoogle Scholar
  23. 23.
    X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. CaO, and Z. Sun, Engineering 4, 361 (2018).CrossRefGoogle Scholar
  24. 24.
    Z. Huang, J. Zhu, R. Qiu, J. Ruan, and R. Qui, J. Clean. Prod. 229, 1148 (2019).CrossRefGoogle Scholar
  25. 25.
    J. Xiao, J. Li, and Z. Xu, Environ. Sci. Technol. 51, 11960 (2017).CrossRefGoogle Scholar
  26. 26.
    D. Wang, X. Zhang, H. Chen, and J. Sun, Miner. Eng. 126, 28 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, IIT-RoorkeeRoorkeeIndia

Personalised recommendations