Advertisement

JOM

, Volume 71, Issue 12, pp 4808–4816 | Cite as

Oxygen-18 Tracer Measurements of Anion Diffusion in Uranium Dioxide Thin Films

  • Joseph R. Bernhardt
  • Xiaochun Han
  • Brent J. HeuserEmail author
Ceramic Materials for Nuclear Energy Applications

Abstract

Oxygen 18 was used as a tracer to quantify anion diffusion in thin-film UO2 using secondary ion mass spectroscopy to measure one-dimensional depth profiles. Both thermal and heavy ion bombardment (1.8 MeV Kr+) treatments were employed over a temperature range from 295 K to 623 K. Textured and single-crystal thin-film samples were grown using reactive-gas magnetron sputtering at ambient temperature. Both microstructures resulted in similar thermal activation energies, Ea = 0.2 eV. This activation energy is significantly lower than the known value for intrinsic anion vacancy-self diffusion in stoichiometric UO2.00 (Ea = 2.5 eV). We attribute this to an interstitialcy mechanism in our hyper-stoichiometric films. The activation energy for irradiated textured films was approximately half that of thermal diffusion, consistent with the chemical rate theory. The opposite was true for the single-crystal microstructure (irradiated Ea = 0.36 eV). This may be due to radiation-induced changes in the microstructure. The mixing parameter was quantified on the anion sublattice as well, ξ = 2.1 ± 0.2 Å5eV−1.

Notes

Acknowledgements

The assistance of T. Spila (SIMS), R. Haasch (XPS), D. Jeffers (ion accelerator), and M. Sardela (XRD) is gratefully acknowledged. The National Academy for Nuclear Training (NANT) fellowship program is greatly acknowledged as well. This work was supported by the US Department of Energy Nuclear Energy Research Initiative under grant no. DEFG-07-14891. In addition, the work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois, which are partially supported by the US Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471.

References

  1. 1.
    W.A. Lambertson, M.H. Mueller, and F.H. Gunzel Jr, J. Am. Ceram. Soc. 36, 397 (1953).CrossRefGoogle Scholar
  2. 2.
    J.H. Yang, D.J. Kim, K.S. Kim, and Y.H. Koo, J. Nucl. Mater. 465, 509 (2015).CrossRefGoogle Scholar
  3. 3.
    C. Degueldre, J. Bertsch, G. Kuri, and M. Martin, Energy Environ. Sci. 4, 1651 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, and C.T. Walker, J. Nucl. Mater. 513, 310 (2019).CrossRefGoogle Scholar
  5. 5.
    T.R. Pavlov, M.R. Wenman, L. Vlahovic, D. Robba, R.J.M. Konings, P. Van Uffelen, and R.W. Grimes, Acta Mater. 139, 138 (2017).CrossRefGoogle Scholar
  6. 6.
    X.M. Bai, M.R. Tonks, Y. Zhang, and J.D. Hales, J. Nucl. Mater. 470, 208 (2016).CrossRefGoogle Scholar
  7. 7.
    J.J. Carbajo, G.L. Yoder, S.G. Popov, and V.K. Ivanov, J. Nucl. Mater. 299, 181 (2001).CrossRefGoogle Scholar
  8. 8.
    J. Janek and H. Timm, J. Nucl. Mater. 255, 116 (1998).CrossRefGoogle Scholar
  9. 9.
    H. Matzke, J. Less Common Met. 121, 537 (1986).CrossRefGoogle Scholar
  10. 10.
    X. Han and B.J. Heuser, J. Nucl. Mater. 466, 588 (2015).CrossRefGoogle Scholar
  11. 11.
    A.B. Auskern and J. Belle, J. Nucl. Mater. 3, 311 (1961).CrossRefGoogle Scholar
  12. 12.
    J.E. Marin and P. Contamin, J. Nucl. Mater. 30, 16 (1969).CrossRefGoogle Scholar
  13. 13.
    K.C. Kim and D.R. Olander, J. Nucl. Mater. 102, 192 (1981).CrossRefGoogle Scholar
  14. 14.
    H. Matzke, Radiation effects 75, 317 (1983).CrossRefGoogle Scholar
  15. 15.
    R.S. Averback and H. Hahn, Phys. Rev. B 37, 10383 (1988).CrossRefGoogle Scholar
  16. 16.
    S.S. Dwaraknath and G.S. Was, J. Nucl. Mater. 474, 76 (2016).CrossRefGoogle Scholar
  17. 17.
    M.K. Miller, C.M. Parish, and H. Bei, J. Nucl. Mater. 462, 422 (2015).CrossRefGoogle Scholar
  18. 18.
    M.M. Strehle, B.J. Heuser, M.S. Elbakhshwan, X. Han, D.J. Gennardo, H.K. Pappas, and H. Ju, Thin Solid Films 520, 5616 (2012).CrossRefGoogle Scholar
  19. 19.
    J.F. Ziegler and J.P. Biersack, Treatise on Heavy-Ion Science (Boston, MA: Springer, 1985), pp. 93–129.CrossRefGoogle Scholar
  20. 20.
    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys Res. Sect. B Beam Interact Mater Atoms 310, 75 (2013).CrossRefGoogle Scholar
  21. 21.
    R. Wilson, F. Stevie, and C.W. Magee, Secondary Ion Mass Spectroscopy: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (New York: Wiley, 1989).Google Scholar
  22. 22.
    H. Idriss, Surf. Sci. Rep. 65, 67 (2010).CrossRefGoogle Scholar
  23. 23.
    A.I. Van Sambeek, R. Averback, C. Flynn, M. Yang, and W. Jager, J. Appl. Phys. 83, 7576 (1998).CrossRefGoogle Scholar
  24. 24.
    R.S. Averback, D. Peak, and L.J. Thompson, Appl. Phys. A 39, 59 (1986).CrossRefGoogle Scholar
  25. 25.
    J. Belle, J. Nucl. Mater. 30, 3 (1969).CrossRefGoogle Scholar
  26. 26.
    P. Contamin, J.J. Bacmann, and J.F. Marin, J. Nucl. Mater. 42, 54 (1972).CrossRefGoogle Scholar
  27. 27.
    M.S. Elbakhshwan, Y. Miao, J.F. Stubbins, and B.J. Heuser, J. Nucl. Mater. 479, 548 (2016).CrossRefGoogle Scholar
  28. 28.
    R. Sizmann, J. Nucl. Mater. 69, 386 (1978).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Nuclear, Plasma, and Radiological EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations