Advertisement

JOM

, Volume 71, Issue 12, pp 4687–4695 | Cite as

Characterization of Microstructure and Texture Evolution in Ti664 Titanium Alloy After Multidirectional Forging and Annealing Treatments

  • Jinwen Sheng
  • Zhenyu Wang
  • Linghong Zheng
  • Patrick J. Masset
  • Di Wu
  • Weimin Bai
  • Ligang ZhangEmail author
  • Libin LiuEmail author
Microstructure Evolution During Deformation Processing
  • 47 Downloads

Abstract

In previous investigations, it was demonstrated that texturing of the microstructure in titanium alloy inevitably occurs after forging in one direction. In this work, the influence of multidirectional forging and annealing on the heterogeneity of the microstructure and crystallographic orientation of a new α + β titanium alloy (Ti-6Al-6Mo-4V) has been studied. A heterogeneous orientation distribution and morphology was observed in the microstructure, containing matrix β grains and α lamellae elongated along the deformation direction after multidirectional forging. Meanwhile, significant <100>//axial direction (AD) and <10\( \bar{1} \)0>//AD textures were formed because of the special deformation mode. After annealing at 825°C, a more homogeneous microstructure was obtained, but the annealing had a limited effect on the texture components. The same texture components were found because of the texture inheritance effect, and the variation of the texture intensity contributed to the grain dissolution and recrystallization effect during subsequent annealing.

Notes

Acknowledgements

This work was financially supported by the National Key Technologies R&D Program of China (Grant No. 2016YFB0701301), National Natural Science Foundation of China (Grant Nos. 51671218, 51501229), National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000), and State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China. Thanks are due to Qian Song of Central South University for her support with English writing.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    S. Nag, R. Banerjee, J. Stechschulte, and H.L. Fraser, J. Mater. Sci. Mater. Med. 16, 679 (2005).Google Scholar
  2. 2.
    T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, and N. Suzuki, Mater. Sci. Forum 426, 681 (2003).Google Scholar
  3. 3.
    M. Geetha, A.K. Singh, R. Asokamaniand, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).Google Scholar
  4. 4.
    R.M. Poths, B.P. Wynne, W.M. Rainforth, J.H. Beynon, G. Angella, and S.L. Semiatin, Metall. Mater. Trans. A 35, 2993 (2004).Google Scholar
  5. 5.
    M.Q. Shi, Y. Takayama, M.A. Chun-An, H. Watanabe, and H. Inoue, Trans. Nonferrous Met. Soc. China 22, 2616 (2012).Google Scholar
  6. 6.
    S.L. Semiatin, A.L. Pilchak, K.T. Kinsel, and G.A. Sargent, Metall. Mater. Trans. A 44, 3852 (2013).Google Scholar
  7. 7.
    G. Obasi, J.Q.D. Fonseca, D. Rugg, and M. Preuss, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 576, 272 (2013).Google Scholar
  8. 8.
    T.S. Jun, D.E.J. Armstrong, and T.B. Britton, J. Alloys Compd. 672, 282 (2016).Google Scholar
  9. 9.
    H. Mishra, P. Ghosal, T.K. Nandy, and P.K. Sagar, Mater. Sci. Eng., A 399, 222 (2005).Google Scholar
  10. 10.
    D. He, J.C. Zhu, Z.H. Lai, Y. Liu, and X.W. Yang, Mater. Des. 46, 38 (2013).Google Scholar
  11. 11.
    X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang, Mater. Sci. Eng., A 527, 5391 (2010).Google Scholar
  12. 12.
    D.X. Wen, Y.C. Lin, and Y. Zhou, Vacuum 141, 316 (2017).Google Scholar
  13. 13.
    A.M. Stapleton, S.L. Raghunathan, I. Bantounas, H.J. Stone, T.C. Lindley, and D. Dye, Acta Mater. 56, 6186 (2008).Google Scholar
  14. 14.
    V. Doquet and V.D. Greef, Int. J. Fatigue 38, 118 (2011).Google Scholar
  15. 15.
    M.G. Glavicic, B.B. Bartha, S.K. Jha, and C.J. Szczepanski, Mater. Sci. Eng., A 513, 325 (2009).Google Scholar
  16. 16.
    L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher, Acta Mater. 56, 4298 (2008).Google Scholar
  17. 17.
    Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, Acta Mater. 131, 305 (2017).Google Scholar
  18. 18.
    Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, and R. Yang, Acta Mater. 126, 372 (2017).Google Scholar
  19. 19.
    H. Chen, F. Li, J. Liu, J. Li, X. Ma, and Q. Wan, Metall. Mater. Trans. A 48, 2396 (2017).Google Scholar
  20. 20.
    R. Bhagat, D. Dye, S.L. Raghunathan, R.J. Talling, D. Inman, B.K. Jackson, K.K. Rao, and R.J. Dashwood, Acta Mater. 58, 5057 (2010).Google Scholar
  21. 21.
    C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, and S. Mitsche, Mater. Sci. Eng., A 651, 280 (2016).Google Scholar
  22. 22.
    G.Q. Wang, Z.B. Zhao, B.B. Yu, J.R. Liu, Q.J. Wang, J.H. Zhang, R. Yang, and J.W. Li, Acta Metall. Sin. Engl. Lett. 30, 499 (2017).Google Scholar
  23. 23.
    Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, J. Alloys Compd. 712, 179 (2017).Google Scholar
  24. 24.
    M. Hölscher, D. Raabe, and K. Lücke, Acta Metall. Mater. 42, 879 (1994).Google Scholar
  25. 25.
    B. Sander and D. Raabe, Mater. Sci. Eng., A 479, 236 (2008).Google Scholar
  26. 26.
    P. Kumar, N.P. Gurao, A. Haldar, and S. Suwas, Metall. Mater. Trans. A 43, 2043 (2012).Google Scholar
  27. 27.
    S. Xu, L.S. Toth, C. Schuman, J.S. Lecomte, and M.R. Barnett, Acta Mater. 124, 59 (2017).Google Scholar
  28. 28.
    A. Fitzner, D.G.L. Prakash, J.Q.D. Fonseca, M. Thomas, S.Y. Zhang, J. Kelleher, P. Manuel, and M. Preuss, Acta Mater. 103, 341 (2016).Google Scholar
  29. 29.
    D. Jorge-Badiola, A. Iza-Mendia, and I. Gutiérrez, Mater. Sci. Eng., A 394, 445 (2005).Google Scholar
  30. 30.
    S. Zherebtsov, M. Murzinova, G. Salishchev, and S.L. Semiatin, Acta Mater. 59, 4138 (2011).Google Scholar
  31. 31.
    L. Li, J. Luo, J.J. Yan, and M.Q. Li, J. Alloys Compd. 622, 174 (2015).Google Scholar
  32. 32.
    L. Li, M.Q. Li, and J. Luo, Acta Mater. 94, 36 (2015).Google Scholar
  33. 33.
    Y. Chen, J. Li, B. Tang, H. Kou, X. Xue, and Y. Cui, J. Alloys Compd. 618, 146 (2015).Google Scholar
  34. 34.
    M. Hasegawa, M. Yamamoto, and H. Fukutomi, Acta Mater. 51, 3939 (2003).Google Scholar
  35. 35.
    R. Cottam, J. Robson, G. Lorimer, and B. Davis, Mater. Sci. Eng., A 485, 375 (2008).Google Scholar
  36. 36.
    S. Gourdet and F. Montheillet, Mater. Sci. Eng., A 283, 274 (2000).Google Scholar
  37. 37.
    A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai, Sci. Eng. A 323, 177 (2002).Google Scholar
  38. 38.
    H. Beladi, P. Cizek, and P.D. Hodgson, Scr. Mater. 61, 528 (2009).Google Scholar
  39. 39.
    M.Q. Yan, Gas Heat 98, 033512 (2010).Google Scholar
  40. 40.
    V.D. Hiwarkar, S.K. Sahoo, K.V.M. Krishna, I. Samajdar, G.K. Dey, D. Srivastav, R. Tewari, S. Banarjee, and R.D. Doherty, Acta Mater. 57, 5812 (2009).Google Scholar
  41. 41.
    N. Moelans, B. Blanpain, and P. Wollants, Acta Mater. 55, 2173 (2007).Google Scholar
  42. 42.
    J. Ågren, Mater. Sci. Eng. 55, 135 (1982).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jinwen Sheng
    • 1
  • Zhenyu Wang
    • 1
  • Linghong Zheng
    • 1
  • Patrick J. Masset
    • 2
  • Di Wu
    • 1
  • Weimin Bai
    • 1
  • Ligang Zhang
    • 1
    Email author
  • Libin Liu
    • 1
    • 3
    Email author
  1. 1.School of Material Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Technallium Engineering and ConsultingSteinberg am SeeGermany
  3. 3.Key Laboratory of Non-ferrous Metallic Materials Science and EngineeringMinistry of EducationChangshaChina

Personalised recommendations