Advertisement

JOM

, Volume 71, Issue 12, pp 4799–4805 | Cite as

Microstructure and Mechanical Properties of Pure Copper Wire Produced by Shear Assisted Processing and Extrusion

  • Xiao LiEmail author
  • Nicole Overman
  • Timothy Roosendaal
  • Matthew Olszta
  • Chen Zhou
  • Hongliang Wang
  • Tom Perry
  • James Schroth
  • Glenn Grant
Microstructure Evolution During Deformation Processing
  • 55 Downloads

Abstract

The shear assisted processing and extrusion (ShAPE) process can consolidate powdered materials and simultaneously extrude wire or tube with improved properties. We successfully produced copper wire extrusions from powder and solid materials for the first time. The extrusion pressure in the ShAPE process is at least ten times less than that required for conventional extrusion. We used optical microscopy to inspect and validate the integrity of extrudates, revealing that the microstructure was refined and dynamically recrystallized to equiaxial grains. Compared with annealed copper wire, ShAPE-processed wire showed 80% higher yield strength, 15% higher ultimate tensile strength, and 20% higher ductility. These results were correlated with refined grain size and substructuring observed via electron backscatter diffraction analysis and transmission electron microscopy.

Notes

Acknowledgements

The authors thank the U.S. Department of Energy Office of Technology Transitions and Vehicles Technologies Office (DOE/OTT and VTO) for supporting this Technology Commercialization Fund (TCF) work. The authors are grateful for the dedication of Jens Darsell and Md. Reza-E-Rabby in assisting with extrusions on the machine, and Anthony Guzman for excellent preparation for metallographic analysis. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76LO1830.

References

  1. 1.
    X. Li, W. Tang, A. Reynolds, W. Tayon, and C. Brice, J. Mater. Process. Technol. 229, 191–198 (2016).CrossRefGoogle Scholar
  2. 2.
    W. Tang and A.P. Reynolds, J. Mater. Process. Technol. 210, 2231–2237 (2010).CrossRefGoogle Scholar
  3. 3.
    X. Li, D. Baffari, and A. Reynolds, Int. J. Adv. Manuf. Technol. 94, 2031–2042 (2018).CrossRefGoogle Scholar
  4. 4.
    J.Z. Gronostajski, J.W. Kaczmar, H. Marciniak, and A. Matuszak, J. Mater. Process. Technol. 64, 149–156 (1997).CrossRefGoogle Scholar
  5. 5.
    R.A. Behnagh, R. Mahdavinejad, A. Yavari, M. Abdollahi, and M. Narvan, Metall. Mater. Trans. B 45, 1484–1489 (2014).CrossRefGoogle Scholar
  6. 6.
    D. Baffari, A.P. Reynolds, X. Li, and L. Fratini, Bonding prediction in friction stir consolidation of aluminum alloys: a preliminary study, 2018.Google Scholar
  7. 7.
    D. Baffari, G. Buffa, and L. Fratini, Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys, Key Engineering Materials (Zürich: Trans Tech Publ, 2016), pp. 39–48.Google Scholar
  8. 8.
    G. Buffa, D. Campanella, L. Fratini, and F. Micari, Int. J. Mater. Form. 9, 613–618 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Baffari, G. Buffa, D. Campanella, L. Fratini, and A.P. Reynolds, J. Manuf. Process. 29, 41–49 (2017).CrossRefGoogle Scholar
  10. 10.
    D. Baffari, G. Buffa, and L. Fratini, J. Mater. Process. Technol. 247, 1–10 (2017).CrossRefGoogle Scholar
  11. 11.
    D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, J. Nucl. Mater. 442, S112–S118 (2013).CrossRefGoogle Scholar
  12. 12.
    D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, Metall. Mater. Trans. A 46, 4730–4739 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Jiang, S.A. Whalen, J.T. Darsell, S. Mathaudhu, and N.R. Overman, Mater. Charact. 123, 166–172 (2017).CrossRefGoogle Scholar
  14. 14.
    S. Whalen, S. Jana, D. Catalini, N. Overman, and J. Sharp, J. Electron. Mater. 45, 3390–3399 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Sharifzadeh, M. Ali Ansari, M. Narvan, R.A. Behnagh, A. Araee, and M.K.B. Givi, Trans. Nonferrous Met. Soc. China 25, 1847–1855 (2015).CrossRefGoogle Scholar
  16. 16.
    N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, and S.N. Mathaudhu, Mater. Sci. Eng. A 701, 56–68 (2017).CrossRefGoogle Scholar
  17. 17.
    I. Dinaharan, R. Sathiskumar, S.J. Vijay, and N. Murugan, Proc. Mater. Sci. 5, 1502–1508 (2014).CrossRefGoogle Scholar
  18. 18.
    H. Jafarzadeh, A. Babaei, and F. Esmaeili-Goldarag, Arch. Civ. Mech. Eng. 18, 1374–1385 (2018).CrossRefGoogle Scholar
  19. 19.
    A. Standard, Annual book of ASTM standards 3 (2004) 57–72.Google Scholar
  20. 20.
    N. Abbas, X. Deng, X. Li, and A.P. Reynolds, Int. J. Mech. Sci. 134, 436–444 (2017).CrossRefGoogle Scholar
  21. 21.
    K. Serope, R. Steven, Publication date (1991) 09-2002.Google Scholar
  22. 22.
    ASTM B152 Standard Specification for Copper Sheet, Strip, Plate, and Rolled Bar, ASTM International, West Conshohocken, 2013.Google Scholar
  23. 23.
    N. Lugo, N. Llorca, J. Cabrera, and Z. Horita, Mater. Sci. Eng. A 477, 366–371 (2008).CrossRefGoogle Scholar
  24. 24.
    A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, and T.G. Langdon, J. Mater. Sci. 49, 2270–2278 (2014).CrossRefGoogle Scholar
  25. 25.
    M. Lipińska, L. Olejnik, and M. Lewandowska, J. Mater. Sci. 53, 3862–3875 (2018).CrossRefGoogle Scholar
  26. 26.
    K. Jata and S. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing, 2000.Google Scholar
  27. 27.
    Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Adv. Mater. 18, 2949–2953 (2006).CrossRefGoogle Scholar
  28. 28.
    F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, and M. Jafari, Mater. Sci. Eng. A 528, 5348–5355 (2011).CrossRefGoogle Scholar
  29. 29.
    P. Prangnell, J.R. Bowen, and P. Apps, Mater. Sci. Eng. A 375, 178–185 (2004).CrossRefGoogle Scholar
  30. 30.
    A. Mishra, V. Richard, F. Gregori, R. Asaro, and M. Meyers, Mater. Sci. Eng. A 410, 290–298 (2005).CrossRefGoogle Scholar
  31. 31.
    W. Skrotzki, N. Scheerbaum, C.-G. Oertel, R. Arruffat-Massion, S. Suwas, and L.S. Toth, Acta Mater. 55, 2013–2024 (2007).CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.General Motors R&D CenterWarrenUSA

Personalised recommendations