Microstructure and Mechanical Properties of Pure Copper Wire Produced by Shear Assisted Processing and Extrusion
- 55 Downloads
Abstract
The shear assisted processing and extrusion (ShAPE) process can consolidate powdered materials and simultaneously extrude wire or tube with improved properties. We successfully produced copper wire extrusions from powder and solid materials for the first time. The extrusion pressure in the ShAPE process is at least ten times less than that required for conventional extrusion. We used optical microscopy to inspect and validate the integrity of extrudates, revealing that the microstructure was refined and dynamically recrystallized to equiaxial grains. Compared with annealed copper wire, ShAPE-processed wire showed 80% higher yield strength, 15% higher ultimate tensile strength, and 20% higher ductility. These results were correlated with refined grain size and substructuring observed via electron backscatter diffraction analysis and transmission electron microscopy.
Notes
Acknowledgements
The authors thank the U.S. Department of Energy Office of Technology Transitions and Vehicles Technologies Office (DOE/OTT and VTO) for supporting this Technology Commercialization Fund (TCF) work. The authors are grateful for the dedication of Jens Darsell and Md. Reza-E-Rabby in assisting with extrusions on the machine, and Anthony Guzman for excellent preparation for metallographic analysis. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76LO1830.
References
- 1.X. Li, W. Tang, A. Reynolds, W. Tayon, and C. Brice, J. Mater. Process. Technol. 229, 191–198 (2016).CrossRefGoogle Scholar
- 2.W. Tang and A.P. Reynolds, J. Mater. Process. Technol. 210, 2231–2237 (2010).CrossRefGoogle Scholar
- 3.X. Li, D. Baffari, and A. Reynolds, Int. J. Adv. Manuf. Technol. 94, 2031–2042 (2018).CrossRefGoogle Scholar
- 4.J.Z. Gronostajski, J.W. Kaczmar, H. Marciniak, and A. Matuszak, J. Mater. Process. Technol. 64, 149–156 (1997).CrossRefGoogle Scholar
- 5.R.A. Behnagh, R. Mahdavinejad, A. Yavari, M. Abdollahi, and M. Narvan, Metall. Mater. Trans. B 45, 1484–1489 (2014).CrossRefGoogle Scholar
- 6.D. Baffari, A.P. Reynolds, X. Li, and L. Fratini, Bonding prediction in friction stir consolidation of aluminum alloys: a preliminary study, 2018.Google Scholar
- 7.D. Baffari, G. Buffa, and L. Fratini, Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys, Key Engineering Materials (Zürich: Trans Tech Publ, 2016), pp. 39–48.Google Scholar
- 8.G. Buffa, D. Campanella, L. Fratini, and F. Micari, Int. J. Mater. Form. 9, 613–618 (2016).CrossRefGoogle Scholar
- 9.D. Baffari, G. Buffa, D. Campanella, L. Fratini, and A.P. Reynolds, J. Manuf. Process. 29, 41–49 (2017).CrossRefGoogle Scholar
- 10.D. Baffari, G. Buffa, and L. Fratini, J. Mater. Process. Technol. 247, 1–10 (2017).CrossRefGoogle Scholar
- 11.D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, J. Nucl. Mater. 442, S112–S118 (2013).CrossRefGoogle Scholar
- 12.D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, Metall. Mater. Trans. A 46, 4730–4739 (2015).CrossRefGoogle Scholar
- 13.X. Jiang, S.A. Whalen, J.T. Darsell, S. Mathaudhu, and N.R. Overman, Mater. Charact. 123, 166–172 (2017).CrossRefGoogle Scholar
- 14.S. Whalen, S. Jana, D. Catalini, N. Overman, and J. Sharp, J. Electron. Mater. 45, 3390–3399 (2016).CrossRefGoogle Scholar
- 15.M. Sharifzadeh, M. Ali Ansari, M. Narvan, R.A. Behnagh, A. Araee, and M.K.B. Givi, Trans. Nonferrous Met. Soc. China 25, 1847–1855 (2015).CrossRefGoogle Scholar
- 16.N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, and S.N. Mathaudhu, Mater. Sci. Eng. A 701, 56–68 (2017).CrossRefGoogle Scholar
- 17.I. Dinaharan, R. Sathiskumar, S.J. Vijay, and N. Murugan, Proc. Mater. Sci. 5, 1502–1508 (2014).CrossRefGoogle Scholar
- 18.H. Jafarzadeh, A. Babaei, and F. Esmaeili-Goldarag, Arch. Civ. Mech. Eng. 18, 1374–1385 (2018).CrossRefGoogle Scholar
- 19.A. Standard, Annual book of ASTM standards 3 (2004) 57–72.Google Scholar
- 20.N. Abbas, X. Deng, X. Li, and A.P. Reynolds, Int. J. Mech. Sci. 134, 436–444 (2017).CrossRefGoogle Scholar
- 21.K. Serope, R. Steven, Publication date (1991) 09-2002.Google Scholar
- 22.ASTM B152 Standard Specification for Copper Sheet, Strip, Plate, and Rolled Bar, ASTM International, West Conshohocken, 2013.Google Scholar
- 23.N. Lugo, N. Llorca, J. Cabrera, and Z. Horita, Mater. Sci. Eng. A 477, 366–371 (2008).CrossRefGoogle Scholar
- 24.A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, and T.G. Langdon, J. Mater. Sci. 49, 2270–2278 (2014).CrossRefGoogle Scholar
- 25.M. Lipińska, L. Olejnik, and M. Lewandowska, J. Mater. Sci. 53, 3862–3875 (2018).CrossRefGoogle Scholar
- 26.K. Jata and S. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing, 2000.Google Scholar
- 27.Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Adv. Mater. 18, 2949–2953 (2006).CrossRefGoogle Scholar
- 28.F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, and M. Jafari, Mater. Sci. Eng. A 528, 5348–5355 (2011).CrossRefGoogle Scholar
- 29.P. Prangnell, J.R. Bowen, and P. Apps, Mater. Sci. Eng. A 375, 178–185 (2004).CrossRefGoogle Scholar
- 30.A. Mishra, V. Richard, F. Gregori, R. Asaro, and M. Meyers, Mater. Sci. Eng. A 410, 290–298 (2005).CrossRefGoogle Scholar
- 31.W. Skrotzki, N. Scheerbaum, C.-G. Oertel, R. Arruffat-Massion, S. Suwas, and L.S. Toth, Acta Mater. 55, 2013–2024 (2007).CrossRefGoogle Scholar