Advertisement

JOM

, Volume 71, Issue 12, pp 4500–4508 | Cite as

CFD-PBM Simulation and PIV Measurement of Liquid–Liquid Flow in a Continuous Stirring Settler

  • Xu-huan Guo
  • Ting-an ZhangEmail author
  • Qiu-yue Zhao
  • Zi-mu Zhang
  • Shuai Zhu
Extraction and Recycling of Battery Materials
  • 77 Downloads

Abstract

The mixer settler is widely employed in the extraction and recycling of battery materials. The improvement of the separation efficiency is one of the most important issues. In order to investigate the effect of agitating speed on the flow characteristics and settling performance, both computational fluid dynamics coupled population balance model simulations and experiments with particle image velocimetry measurement have been performed in this work to investigate the flow field at different agitating speeds. The predicted data were in good agreement with the experimental data. The results demonstrated that an appropriate agitating speed could effectively promote the collision efficiency of organic phase droplets and accelerate the separation process. When the agitating speed was too large, the shear stress of the fluid would promote the breakage of the organic phase droplets and decrease the separation efficiency. This work will contribute to optimizing and designing large-scale stirring settlers.

Notes

Acknowledgements

The authors are grateful for the financial support of the National 863 Plan (2010AA03A405), National Key R&D Program of China (2017yfc0210403-04), National Key R&D Program of China (2017YFC0210404) and the Excellent Talents Cultivation Project of Liaoning Province (2015020591).

References

  1. 1.
    K. Tanong, L.H. Tran, G. Mercier, and J.F. Blais, J. Clean. Prod. 148, 233 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Dhiman and B. Gupta, J. Clean. Prod. 225, 820 (2019).CrossRefGoogle Scholar
  3. 3.
    Y.J. Shih, S.K. Chien, S.R. Jhang, and Y.C. Lin, J. Taiwan Inst. Chem. E 100, 151 (2019).CrossRefGoogle Scholar
  4. 4.
    R. Torkaman, M. Asadollahzadeh, M. Torab-Mostaedi, and M.G. Maragheh, Sep. Purif. Technol. 186, 318 (2017).CrossRefGoogle Scholar
  5. 5.
    S.S. Ye, Q. Tang, Y.D. Wang, and W.Y. Fei, Int. J. Heat Fluid. Fl 62, 568 (2016).CrossRefGoogle Scholar
  6. 6.
    S.K. Panda, K.K. Singh, K.T. Shenoy, and V.V. Buwa, Chem. Eng. J. 310, 120 (2017).CrossRefGoogle Scholar
  7. 7.
    S.K. Panda and V.V. Buwa, Ind. Eng. Chem. Res. 56, 13929 (2017).CrossRefGoogle Scholar
  8. 8.
    X.H. Guo, Q.Y. Zhao, T.A. Zhang, Z.M. Zhang, and Z. Zhu, JOM 71, 1650 (2019).CrossRefGoogle Scholar
  9. 9.
    G.L. Lane, K. Mohanarangam, W. Yang, D.J. Robinson, and K.R. Barnard, Chem. Eng. Res. Des. 109, 200 (2016).CrossRefGoogle Scholar
  10. 10.
    L. Huang, S.S. Deng, M. Chen, and J.F. Guan, Chem. Eng. Sci. 172, 107 (2017).CrossRefGoogle Scholar
  11. 11.
    N.N. Liu, W. Wang, Y. Wang, Z. Wang, J.C. Han, J. Gong, and C.C. Wu, Appl. Therm. Eng. 125, 1209 (2017).CrossRefGoogle Scholar
  12. 12.
    W. Wang, W. Cheng, J.M. Duan, J. Gong, B. Hu, and P. Angeli, Chem. Eng. Sci. 105, 22 (2014).CrossRefGoogle Scholar
  13. 13.
    X.L. Cai, J.Q. Chen, M.L. Liu, Y.P. Ji, G.D. Ding, and L. Zhang, J. Disper. Sci. Technol. 38, 1435 (2016).CrossRefGoogle Scholar
  14. 14.
    X.L. Cai, J.Q. Chen, M.L. Liu, Y.P. Ji, and S. An, Sep. Purif. Technol. 176, 134 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Castellano, N.S. Othman, D. Marchisio, A. Buffo, and S. Charton, Chem. Eng. J. 354, 1197 (2018).CrossRefGoogle Scholar
  16. 16.
    A. Misra, L.G.M.D. Souza, M. Illner, L. Hohl, M. Kraume, J.U. Repke, and D. Thévenin, Chem. Eng. Sci. 167, 242 (2017).CrossRefGoogle Scholar
  17. 17.
    L. Qi, X.H. Meng, R. Zhang, H.Y. Liu, C.M. Xu, Z.C. Liu, and P.A.A. Klusener, Chem. Eng. J. 268, 116 (2015).CrossRefGoogle Scholar
  18. 18.
    L. Xie, Q. Liu, and Z.H. Luo, Chem. Eng. Res. Des. 130, 1 (2018).CrossRefGoogle Scholar
  19. 19.
    C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, T.A. Zhang, and Y. Liu, China Pet. Process. Pe. 17, 121 (2015).Google Scholar
  20. 20.
    C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, L. Yan, and T.A. Zhang, Chin. J. Rare Metals 39, 540 (2015).Google Scholar
  21. 21.
    S.C. Wang, T.A. Zhang, Z.M. Zhang, C. Lv, Q.Y. Zhao, and Y. Liu, China Pet. Process. Pe. 16, 99 (2014).Google Scholar
  22. 22.
    D.Y. Li, Z.M. Gao, A. Buffo, W. Podgorska, and D.L. Marchisio, AIChE J. 63, 2293 (2017).CrossRefGoogle Scholar
  23. 23.
    C. Tsouris and L.L. Tavlarides, AIChE J. 40, 395 (1994).CrossRefGoogle Scholar
  24. 24.
    S.A. Morsi and A.J. Alexander, J. Fluid Mech. 55, 193 (1972).CrossRefGoogle Scholar
  25. 25.
    P.G. Saffman and J.S. Turner, J. Fluid Mech. 1, 16 (1956).CrossRefGoogle Scholar
  26. 26.
    H. Luo and H.F. Svendsen, Chem. Eng. Commun. 145, 145 (1996).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xu-huan Guo
    • 1
    • 2
  • Ting-an Zhang
    • 1
    • 2
    Email author
  • Qiu-yue Zhao
    • 1
    • 2
  • Zi-mu Zhang
    • 1
    • 2
  • Shuai Zhu
    • 1
    • 2
  1. 1.Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations