Advertisement

JOM

, Volume 71, Issue 11, pp 4136–4143 | Cite as

Dislocation Density-Based Multiscale Modeling of Deformation and Subgrain Texture in Polycrystals

  • Mehdi HamidEmail author
  • Hussein M. Zbib
Microstructure Evolution During Deformation Processing
  • 92 Downloads

Abstract

In this work, a viscoplastic fast Fourier transform (FFT)-based code is combined with a continuum dislocation dynamics (CDD) framework to analyze the mechanical behavior of polycrystalline MgAZ31 material under unidirectional tensile test. A crystal plasticity formulation including the size effects through a stress/strain gradient theory, dislocation density flux among neighboring grains and grain boundary back stress field is implemented into the CDD and coupled with VPFFT for this purpose. Then, an electron backscatter diffraction-based orientation image microscopy of a sample microstructure is applied as an input to the code. The model predicts, among other things, distributions of stress, strain, mobile dislocation density, geometrically necessary dislocation and stress–strain behavior. The numerical findings are compared with experimental results, and the micromechanical behavior of the polycrystal is discussed regarding dislocation density evaluation in different stages of strain hardening.

Notes

Acknowledgments

The support provided by the National Science Foundation’s CMMI program to WSU under Grant No. 1434879 is gratefully acknowledged.

Supplementary material

11837_2019_3744_MOESM1_ESM.pdf (65 kb)
Supplementary material 1 (PDF 65 kb)

References

  1. 1.
    M. Hamid, H. Lyu, and H. Zbib, Philos Mag 98, 2896 (2018).CrossRefGoogle Scholar
  2. 2.
    C. Paramatmuni and A.K. Kanjarla, Int. J. Plast 113, 269 (2019).CrossRefGoogle Scholar
  3. 3.
    M. Arul Kumar, I.J. Beyerlein, and C.N. Tomé, Acta Mater. 116, 143 (2016).CrossRefGoogle Scholar
  4. 4.
    H. Wang, P.D. Wu, J. Wang, and C.N. Tomé, Int. J. Plast 49, 36 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Das, F. Hofmann, and E. Tarleton, Int. J. Plast 109, 18 (2018).CrossRefGoogle Scholar
  6. 6.
    A.H. Kobaissy, G. Ayoub, L.S. Toth, S. Mustapha, and M. Shehadeh, Int. J. Plast 114, 252 (2018).CrossRefGoogle Scholar
  7. 7.
    H. Wang, B. Clausen, C.N. Tomé, and P.D. Wu, Acta Mater. 61, 1179 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, and M. Knezevic, Int. J. Plast 83, 90 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Ardeljan and M. Knezevic, Acta Mater. 157, 339 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Ardeljan, I.J. Beyerlein, and M. Knezevic, Int. J. Plast 99, 81 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Int. J. Plast 109, 193 (2018).CrossRefGoogle Scholar
  12. 12.
    M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Acta Mater. 164, 530 (2019).CrossRefGoogle Scholar
  13. 13.
    A. Eghtesad, M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Comput. Mech. 61, 89 (2018).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R.A. Lebensohn, R. Brenner, O. Castelnau, and A.D. Rollett, Acta Mater. 56, 3914 (2008).CrossRefGoogle Scholar
  15. 15.
    R.A. Lebensohn, E.M. Bringa, and A. Caro, Acta Mater. 55, 261 (2007).CrossRefGoogle Scholar
  16. 16.
    R.A. Lebensohn and A. Needleman, J. Mech. Phys. Solids 97, 333 (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    R.A. Lebensohn, Acta Mater. 49, 2723 (2001).CrossRefGoogle Scholar
  18. 18.
    J.C. Michel, H. Moulinec, and P. Suquet, Int. J. Numer. Meth. Eng. 52, 159 (2001).CrossRefGoogle Scholar
  19. 19.
    H. Askari, J. Young, D. Field, G. Kridli, D.S. Li, and H. Zbib, Philos Mag 94, 381 (2014).CrossRefGoogle Scholar
  20. 20.
    H. Moulinec and P. Suquet, Comput Method Appl M 157, 69 (1998).CrossRefGoogle Scholar
  21. 21.
    J.E. Bailey and P.B. Hirsch, Philos Mag 5, 485 (1960).CrossRefGoogle Scholar
  22. 22.
    E. Orowan, Proceedings of the Physical Society 52, 8 (1940).CrossRefGoogle Scholar
  23. 23.
    Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma, Acta Mater. 52, 1859 (2004).CrossRefGoogle Scholar
  24. 24.
    N. Taheri-Nassaj and H.M. Zbib, Int. J. Plast 74, 1 (2015).CrossRefGoogle Scholar
  25. 25.
    H. Lyu, A. Ruimi, and H.M. Zbib, Int. J. Plast 72, 44 (2015).CrossRefGoogle Scholar
  26. 26.
    S. Queyreau, G. Monnet, and B. Devincre, Int. J. Plast 25, 361 (2009).CrossRefGoogle Scholar
  27. 27.
    D. Terentyev, D. Bacon, and Y.N. Osetsky, J. Phys.: Condens. Matter 20, 445007 (2008).Google Scholar
  28. 28.
    S. Akarapu and J.P. Hirth, Acta Mater. 61, 3621 (2013).CrossRefGoogle Scholar
  29. 29.
    M. Hamid, H. Lyu, B.J. Schuessler, P.C. Wo, and H.M. Zbib, Crystals 7, 152 (2017).CrossRefGoogle Scholar
  30. 30.
    D.S. Li, H. Zbib, X. Sun, and M. Khaleel, Int. J. Plast 52, 3 (2014).CrossRefGoogle Scholar
  31. 31.
    H.T. Zhu and H.M. Zbib, Acta Mech. 121, 165 (1997).CrossRefGoogle Scholar
  32. 32.
    T. Ohashi, Int. J. Plast 21, 2071 (2005).CrossRefGoogle Scholar
  33. 33.
    K. Shizawa and H.M. Zbib, Journal Of Engineering Materials And Technology-Transactions Of The Asme 121, 247 (1999).CrossRefGoogle Scholar
  34. 34.
    Z. Shen, R.H. Wagoner, and W.A.T. Clark, Acta Metall. 36, 3231 (1988).CrossRefGoogle Scholar
  35. 35.
    K.G. Davis, E. Teghtsoonian, and A. Lu, Acta Metall. 14, 1677 (1966).CrossRefGoogle Scholar
  36. 36.
    E. Werner and W. Prantl, Acta Metall. Mater. 38, 533 (1990).CrossRefGoogle Scholar
  37. 37.
    J.F. Nye, Acta Metall. 1, 153 (1953).CrossRefGoogle Scholar
  38. 38.
    M.G. Armentano and R.G. Duran, Appl Numer Math 37, 397 (2001).MathSciNetCrossRefGoogle Scholar
  39. 39.
    W.K. Liu, S.F. Li, and T. Belytschko, Comput Method Appl M 143, 113 (1997).CrossRefGoogle Scholar
  40. 40.
    H. Lyu, M. Hamid, A. Ruimi, and H.M. Zbib, Int. J. Plast 97, 46 (2017).CrossRefGoogle Scholar
  41. 41.
    G.D. Sim, G. Kim, S. Lavenstein, M.H. Hamza, H.D. Fan, and J.A. El-Awady, Acta Mater. 144, 11 (2018).CrossRefGoogle Scholar
  42. 42.
    B. Raeisinia, S.R. Agnew, and A. Akhtar, Metallurgical and materials transactions. 42, 1418–1430 (2011).CrossRefGoogle Scholar
  43. 43.
    U. Ali, Numerical Modeling of Failure in Magnesium Alloys under Axial Compression and Bending for Crashworthiness Applications. Master Thesis, University of Waterloo (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations