Advertisement

JOM

pp 1–11 | Cite as

Atomistic Computational Analysis of the Loading Orientation-Dependent Phase Transformation in Graphite under Compression

  • Yipeng Peng
  • Liming XiongEmail author
Crystal Orientation Dependence of Mechanical and Thermal Properties in Functional Nanomaterials
  • 35 Downloads

Abstract

In this work, we perform atomistic simulations to study the phase transformations (PT) in graphite under compression. Our major findings are: (1) when the compression is parallel to the basal plane, graphite layers buckle, kink bands form, and then the diamond nucleates at the intersection of kink bands; the initially introduced dislocations block the graphite layer slippage and promote the graphite-to-diamond PT; (2) instead, when the sample is compressed normal to the basal plane, no buckling is observed, and in this situation, the pre-existing dislocations delay the structure change; and (3) the PT is found to be controlled by local stresses from which a criterion can be formulated for detecting the graphite lattice instability. Despite the limited length scales in our atomistic models, the above results may support the search for new routes to fabricate artificial diamonds at a significantly less cost than that required by traditional techniques.

Notes

Acknowledgments

We acknowledge the support of NSF (Grant No. CMMI-1536925 and CMMI-1824840) and the Extreme Science and Engineering Discovery Environment (TG-MSS170003).

References

  1. 1.
    F. Bundy, J. Chem. Phys. 38, 631 (1963).CrossRefGoogle Scholar
  2. 2.
    R.M. Hazen, The diamond makers (Cambridge: Cambridge University Press, 1999).Google Scholar
  3. 3.
    H.T. Hall, Science 128, 445 (1958).CrossRefGoogle Scholar
  4. 4.
    M.G. Loshak and L.I. Alexandrova, Int. J. Refract. Met. Hard Mater. 19, 5 (2001).CrossRefGoogle Scholar
  5. 5.
    Y. Gao, Y. Ma, Q. An, V. Levitas, Y. Zhang, B. Feng, J. Chaudhuri, and W.A. Goddard, Carbon 146, 364 (2019).CrossRefGoogle Scholar
  6. 6.
    K. Edalati, T. Daio, Y. Ikoma, M. Arita, and Z. Horita, Appl. Phys. Lett. 103, 034108 (2013).CrossRefGoogle Scholar
  7. 7.
    W.L. Mao, H. Mao, P.J. Eng, T.P. Trainor, M. Newville, C. Kao, D.L. Heinz, J. Shu, Y. Meng, and R.J. Hemley, Science 302, 425 (2003).CrossRefGoogle Scholar
  8. 8.
    Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Umemoto, R.M. Wentzcovitch, S. Saito, and T. Miyake, Phys. Rev. Lett. 104, 125504 (2010).CrossRefGoogle Scholar
  10. 10.
    J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Niu, X.-Q. Chen, S. Wang, D. Li, W.L. Mao, and Y. Li, Phys. Rev. Lett. 108, 135501 (2012).CrossRefGoogle Scholar
  12. 12.
    J.-T. Wang, C. Chen, and Y. Kawazoe, J. Chem. Phys. 137, 024502 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Akaishi, H. Kanda, and S. Yamaoka, Jpn. J. Appl. Phys. 29, L1172 (1990).CrossRefGoogle Scholar
  14. 14.
    M. Akaishi, H. Kanda, and S. Yamaoka, J. Cryst. Growth 104, 578 (1990).CrossRefGoogle Scholar
  15. 15.
    B. Feng, V.I. Levitas, and Y. Ma, J. Appl. Phys. 115, 163509 (2014).CrossRefGoogle Scholar
  16. 16.
    B. Feng and V.I. Levitas, J. Appl. Phys. 114, 213514 (2013).CrossRefGoogle Scholar
  17. 17.
    V.I. Levitas and O.M. Zarechnyy, Phys. Rev. B 82, 174123 (2010).CrossRefGoogle Scholar
  18. 18.
    B. Feng, V.I. Levitas, and W. Li, Int. J. Plast 113, 236 (2019).CrossRefGoogle Scholar
  19. 19.
    V.I. Levitas and M. Javanbakht, Nanoscale 6, 162 (2014).CrossRefGoogle Scholar
  20. 20.
    L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002).CrossRefGoogle Scholar
  21. 21.
    J.A. Warren and W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995).CrossRefGoogle Scholar
  22. 22.
    M.A. Zaeem, N. Zhang, and M. Mamivand, Comput. Mater. Sci. 160, 120 (2019).CrossRefGoogle Scholar
  23. 23.
    S. Xu, J. R. Mianroodi, A. Hunter, I. J. Beyerlein, and B. Svendsen, Philos. Mag. 1 (2019).Google Scholar
  24. 24.
    J. Mayeur, I. Beyerlein, C. Bronkhorst, and H. Mourad, Int. J. Plast 65, 206 (2015).CrossRefGoogle Scholar
  25. 25.
    J.R. Mayeur, D.L. McDowell, and D.J. Bammann, J. Mech. Phys. Solids 59, 398 (2011).MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Anahid, M.K. Samal, and S. Ghosh, J. Mech. Phys. Solids 59, 2157 (2011).CrossRefGoogle Scholar
  27. 27.
    Y. Hong, N. Zhang, and L. Xiong, J. Micromechanics Mol. Phys. 1, 1640007 (2016).CrossRefGoogle Scholar
  28. 28.
    N. Zhang et al., J. Appl. Phys. 109, 063534 (2011).CrossRefGoogle Scholar
  29. 29.
    N. Zhang and M.A. Zaeem, Acta Mater. 120, 337 (2016).CrossRefGoogle Scholar
  30. 30.
    V.I. Levitas, H. Chen, and L. Xiong, Phys. Rev. B 96, 054118 (2017).CrossRefGoogle Scholar
  31. 31.
    V.I. Levitas, H. Chen, and L. Xiong, Phys. Rev. Lett. 118, 025701 (2017).CrossRefGoogle Scholar
  32. 32.
    H. Chen, V. Levitas, and L. Xiong, Comput. Mater. Sci. 157, 132 (2019).CrossRefGoogle Scholar
  33. 33.
    M. Barsoum, X. Zhao, S. Shanazarov, A. Romanchuk, S. Koumlis, S. Pagano, L. Lamberson, and G. Tucker, Phys. Rev. Mater. 3, 013602 (2019).CrossRefGoogle Scholar
  34. 34.
    D. Freiberg, M. Barsoum, and G. Tucker, Phys. Rev. Mater. 2, 053602 (2018).CrossRefGoogle Scholar
  35. 35.
    M. Barsoum and G. Tucker, Scr. Mater. 139, 166 (2017).CrossRefGoogle Scholar
  36. 36.
    R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, and M. Parrinello, Nat. Mater. 10, 693 (2011).CrossRefGoogle Scholar
  37. 37.
    H. Xie, F. Yin, T. Yu, J.-T. Wang, and C. Liang, Sci. Rep. 4, 5930 (2014).CrossRefGoogle Scholar
  38. 38.
    M. Barsoum, A. Murugaiah, S. Kalidindi, T. Zhen, and Y. Gogotsi, Carbon 42, 1435 (2004).CrossRefGoogle Scholar
  39. 39.
    J. Gruber, A.C. Lang, J. Griggs, M.L. Taheri, G.J. Tucker, and M.W. Barsoum, Sci. Rep. 6, 33451 (2016).CrossRefGoogle Scholar
  40. 40.
    S. Plimpton, 42 (n.d.).Google Scholar
  41. 41.
    Y. Chen and E.P.L. Europhys, Lett. 116, 34003 (2016).Google Scholar
  42. 42.
    Y. Chen and A. Diaz, Phys. Rev. E 98, 052113 (2018).CrossRefGoogle Scholar
  43. 43.
    J. Rigelesaiyin, A. Diaz, W. Li, L. Xiong, and Y. Chen, Proc. R. Soc. Math. Phys. Eng. Sci. 474, 20180155 (2018).CrossRefGoogle Scholar
  44. 44.
    Y. Chen and A. Diaz, Phys. Rev. E 94, 053309 (2016).CrossRefGoogle Scholar
  45. 45.
    L.M. Ghiringhelli, J.H. Los, E.J. Meijer, A. Fasolino, and D. Frenkel, Phys. Rev. Lett. 94, 145701 (2005).CrossRefGoogle Scholar
  46. 46.
    L. Pastewka, A. Klemenz, P. Gumbsch, and M. Moseler, Phys. Rev. B 87, 205410 (2013).CrossRefGoogle Scholar
  47. 47.
    J. Titantah and D. Lamoen, Carbon 43, 1311 (2005).CrossRefGoogle Scholar
  48. 48.
    J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).CrossRefGoogle Scholar
  49. 49.
    M.J. López, I. Cabria, and J.A. Alonso, J. Chem. Phys. 135, 104706 (2011).CrossRefGoogle Scholar
  50. 50.
    G.-D. Lee, C. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, and K. Ho, Phys. Rev. Lett. 95, 205501 (2005).CrossRefGoogle Scholar
  51. 51.
    P. Thrower and R. Mayer, Phys. Status Solidi A 47, 11 (1978).CrossRefGoogle Scholar
  52. 52.
    T. Liang, T.-R. Shan, Y.-T. Cheng, B.D. Devine, M. Noordhoek, Y. Li, Z. Lu, S.R. Phillpot, and S.B. Sinnott, Mater. Sci. Eng. R Rep. 74, 255 (2013).CrossRefGoogle Scholar
  53. 53.
    S.G. Srinivasan, A.C. Van Duin, and P. Ganesh, J. Phys. Chem. A 119, 571 (2015).CrossRefGoogle Scholar
  54. 54.
    M.L. Falk and J.S. Langer, Phys. Rev. E 57, 7192 (1998).CrossRefGoogle Scholar
  55. 55.
    F. Shimizu, S. Ogata, and J. Li, Mater. Trans. 48, 2923 (2007).CrossRefGoogle Scholar
  56. 56.
    A.C. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
  57. 57.
    A. Karma, Phys. Rev. Lett. 87, 115701 (2001).CrossRefGoogle Scholar
  58. 58.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).CrossRefGoogle Scholar
  59. 59.
    E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, and H. Jonsson, Comput. Phys. Commun. 205, 13 (2016).CrossRefGoogle Scholar
  60. 60.
    Y.X. Zhao and I.L. Spain, Phys. Rev. B 40, 993 (1989).CrossRefGoogle Scholar
  61. 61.
    L. Xiong, G. Tucker, D.L. McDowell, and Y. Chen, J. Mech. Phys. Solids 59, 160 (2011).CrossRefGoogle Scholar
  62. 62.
    L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, and Y. Chen, Acta Mater. 60, 899 (2012).CrossRefGoogle Scholar
  63. 63.
    L. Xiong, D.L. McDowell, and Y. Chen, Scr. Mater. 67, 633 (2012).CrossRefGoogle Scholar
  64. 64.
    H. Chen, S. Xu, W. Li, R. Ji, T. Phan, and L. Xiong, Comput. Mater. Sci. 144, 1 (2018).CrossRefGoogle Scholar
  65. 65.
    L. Xiong and Y. Chen, Model. Simul. Mater. Sci. Eng. 17, 035002 (2009).CrossRefGoogle Scholar
  66. 66.
    L. Xiong, D.L. McDowell, and Y. Chen, Int. J. Plast 55, 268 (2014).CrossRefGoogle Scholar
  67. 67.
    L. Xiong, X. Chen, N. Zhang, D.L. McDowell, and Y. Chen, Arch. Appl. Mech. 84, 1665 (2014).CrossRefGoogle Scholar
  68. 68.
    S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Acta Mater. 122, 412 (2017).CrossRefGoogle Scholar
  69. 69.
    S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, J. Mech. Phys. Solids 96, 460 (2016).CrossRefGoogle Scholar
  70. 70.
    X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, and Y. Chen, Acta Mater. 136, 355 (2017).CrossRefGoogle Scholar
  71. 71.
    Y. Chen, J. Chem. Phys. 130, 134706 (2009).CrossRefGoogle Scholar
  72. 72.
    J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946).CrossRefGoogle Scholar
  73. 73.
    J.G. Kirkwood, J. Chem. Phys. 15, 72 (1947).CrossRefGoogle Scholar
  74. 74.
    R.J. Bearman and J.G. Kirkwood, J. Chem. Phys. 28, 136 (1958).MathSciNetCrossRefGoogle Scholar
  75. 75.
    J. Irving and J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950).MathSciNetCrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIowa State UniversityAmesUSA

Personalised recommendations