pp 1–13 | Cite as

Co-infiltration of Nickel and Mixed Conducting Gd0.1Ce0.9O2−δ and La0.6Sr0.3Ni0.15Cr0.85O3−δ Phases in Ni-YSZ Anodes for Improved Stability and Performance

  • Yanchen Lu
  • Paul Gasper
  • Alexey Y. Nikiforov
  • Uday B. Pal
  • Srikanth Gopalan
  • Soumendra N. BasuEmail author
Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements


Liquid-phase infiltration of nickel (Ni) nanoparticles in Ni/yttria-stabilized-zirconia (YSZ) cermet anodes for solid oxide fuel cells can improve anode performance provided that the infiltrated nanoparticles on YSZ connect to form conducting pathways and the Ni nanoparticles do not coarsen significantly. This study explores liquid phase co-infiltration of Ni with mixed conducting oxides, the latter providing microstructural stability and conductive pathways between Ni nanoparticles. Two mixed conducting oxides have been studied: Gd0.1Ce0.9O2−δ (GDC), a predominantly ionic conductor, and La0.6Sr0.3Ni0.15Cr0.85O3−δ (LSNC), a predominantly electronic conductor. Experimental results show that both oxides improve the nickel nanoparticle stability and charge transfer kinetics. However, the electrochemical performance of the Ni-GDC-infiltrated electrode is much better than that of the Ni-LSNC-infiltrated electrode. This is attributed to the citrate–nitrate combustion reaction required to form LSNC, which fills the pores of the anode and inhibits gas diffusion, reducing the performance of the Ni-LSNC-infiltrated electrode.



The research was funded in part by the Department of Energy, National Energy Technology Laboratory, under Award No. DEFE0026096. The authors gratefully acknowledge the contributions of Dr. Zhihao Sun.


  1. 1.
    J.T.S. Irvine and P. Connor, Solid Oxide Fuel Cells: Facts and Figures/Past, Present and Future Perspectives for SOFC Technologies (London: Springer, 2013) Scholar
  2. 2.
    R.P. O’Hayre, S.-W. Cha, W.G. Colella, and F.B. Prinz, Fuel Cell Fundamentals, 1st ed. (Hoboken: Wiley, 2016).CrossRefGoogle Scholar
  3. 3.
    M. Boaro and A.S. Arico, eds., Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology (Cham: Springer, 2017) Scholar
  4. 4.
    E.D. Wachsman and K.T. Lee, Science 334, 935 (2011). Scholar
  5. 5.
    J.M. Vohs and R.J. Gorte, Adv. Mater. 21, 943 (2009). Scholar
  6. 6.
    J.T.S. Irvine, D. Neagu, M.C. Verbraeken, C. Chatzichristodoulou, C. Graves, and M.B. Mogensen, Nat. Energy 1, 15014 (2016). Scholar
  7. 7.
    J.H. Myung, D. Neagu, D.N. Miller, and J.T. Irvine, Nature (2016). Scholar
  8. 8.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater. Sci. 72, 141 (2015). Scholar
  9. 9.
    X.M. Ge, S.H. Chan, Q.L. Liu, and Q. Sun, Adv. Energy Mater. 2, 1156 (2012). Scholar
  10. 10.
    A. Bertei, J.G. Pharoah, D.A.W. Gawel, and C. Nicolella, ECS Trans. 57, 2527 (2013). Scholar
  11. 11.
    L. Holzer, B. Münch, B. Iwanschitz, M. Cantoni, T. Hocker, and T. Graule, J. Power Sources 196, 7076 (2011). Scholar
  12. 12.
    M. Kishimoto, Y. Kawakami, Y. Otani, H. Iwai, and H. Yoshida, Scr. Mater. 140, 5 (2017). Scholar
  13. 13.
    Y. Lu, P. Gasper, U.B. Pal, S. Gopalan, and S.N. Basu, J. Power Sources 396, 257 (2018). Scholar
  14. 14.
    P. Gasper, Y. Lu, S.N. Basu, S. Gopalan, and U.B. Pal, J. Power Sources (2019). Scholar
  15. 15.
    A. Bertei, E. Ruiz-Trejo, K. Kareh, V. Yufit, X. Wang, F. Tariq, and N.P. Brandon, Nano Energy 38, 526 (2017). Scholar
  16. 16.
    T. Klemensø, K. Thydén, M. Chen, and H.J. Wang, J. Power Sources 195, 7295 (2010). Scholar
  17. 17.
    P. Keyvanfar and V. Birss, J. Electrochem. Soc. 161, F660 (2014). Scholar
  18. 18.
    E.F. Hardjo, D.S. Monder, and K. Karan, J. Electrochem. Soc. 161, F83 (2014). Scholar
  19. 19.
    P.I. Cowin, C.T.G. Petit, R. Lan, J.T.S. Irvine, and S. Tao, Adv. Energy Mater. 1, 314 (2011). Scholar
  20. 20.
    T. Shimonosono, Y. Hirata, Y. Ehira, S. Sameshima, T. Horita, and H. Yokokawa, J. Ceram. Soc. Jpn. 112, 616 (2004). Scholar
  21. 21.
    S.P. Jiang, Int. J. Hydrog. Energy 37, 449 (2012). Scholar
  22. 22.
    Z. Liu, B. Liu, D. Ding, M. Liu, F. Chen, and C. Xia, J. Power Sources 237, 243 (2013). Scholar
  23. 23.
    S.P. Jiang, Y.Y. Duan, and J.G. Love, J. Electrochem. Soc. 149, A1175 (2002). Scholar
  24. 24.
    T.L. Skafte, J. Hjelm, P. Blennow, and C. Graves, J. Power Sources 378, 685 (2018). Scholar
  25. 25.
    E.C. Miller, Q. Sherman, Z. Gao, P.W. Voorhees, and S.A. Barnett, ECS Trans. 68, 1245 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Sun, J. Li, Y. Zeng, B.S. Amirkhiz, M. Wang, Y. Behnamian, and J. Luo, J. Mater. Chem. A 3, 11048 (2015). Scholar
  27. 27.
    R. Kiebach, P. Zielke, J.V.T. Hogh, K. Thyden, H.J. Wang, R. Barford, and P.V. Hendriksen, Fuel Cells (2016). Scholar
  28. 28.
    R. Kiebach, C. Knöfel, F. Bozza, T. Klemensø, and C. Chatzichristodoulou, J. Power Sources 228, 170 (2013). Scholar
  29. 29.
    Z. Jiao and N. Shikazono, Acta Mater. 135, 124 (2017). Scholar
  30. 30.
    Z. Jiao and N. Shikazono, J. Power Sources 396, 119 (2018). Scholar
  31. 31.
    A. Utz, H. Störmer, A. Leonide, A. Weber, and E. Ivers-Tiffée, J. Electrochem. Soc. 157, B920 (2010). Scholar
  32. 32.
    V. Sonn, A. Leonide, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, B675 (2008). Scholar
  33. 33.
    A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, B36 (2008). Scholar
  34. 34.
    K.J. Yoon, P. Zink, S. Gopalan, and U.B. Pal, J. Power Sources 172, 39 (2007). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringBoston UniversityBrooklineUSA
  2. 2.Boston University Photonics CenterBostonUSA
  3. 3.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations