Advertisement

JOM

pp 1–13 | Cite as

Co-infiltration of Nickel and Mixed Conducting Gd0.1Ce0.9O2−δ and La0.6Sr0.3Ni0.15Cr0.85O3−δ Phases in Ni-YSZ Anodes for Improved Stability and Performance

  • Yanchen Lu
  • Paul Gasper
  • Alexey Y. Nikiforov
  • Uday B. Pal
  • Srikanth Gopalan
  • Soumendra N. BasuEmail author
Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • 1 Downloads

Abstract

Liquid-phase infiltration of nickel (Ni) nanoparticles in Ni/yttria-stabilized-zirconia (YSZ) cermet anodes for solid oxide fuel cells can improve anode performance provided that the infiltrated nanoparticles on YSZ connect to form conducting pathways and the Ni nanoparticles do not coarsen significantly. This study explores liquid phase co-infiltration of Ni with mixed conducting oxides, the latter providing microstructural stability and conductive pathways between Ni nanoparticles. Two mixed conducting oxides have been studied: Gd0.1Ce0.9O2−δ (GDC), a predominantly ionic conductor, and La0.6Sr0.3Ni0.15Cr0.85O3−δ (LSNC), a predominantly electronic conductor. Experimental results show that both oxides improve the nickel nanoparticle stability and charge transfer kinetics. However, the electrochemical performance of the Ni-GDC-infiltrated electrode is much better than that of the Ni-LSNC-infiltrated electrode. This is attributed to the citrate–nitrate combustion reaction required to form LSNC, which fills the pores of the anode and inhibits gas diffusion, reducing the performance of the Ni-LSNC-infiltrated electrode.

Notes

Acknowledgements

The research was funded in part by the Department of Energy, National Energy Technology Laboratory, under Award No. DEFE0026096. The authors gratefully acknowledge the contributions of Dr. Zhihao Sun.

References

  1. 1.
    J.T.S. Irvine and P. Connor, Solid Oxide Fuel Cells: Facts and Figures/Past, Present and Future Perspectives for SOFC Technologies (London: Springer, 2013) https://doi.org/10.1007/978-1-4471-4456-4.CrossRefGoogle Scholar
  2. 2.
    R.P. O’Hayre, S.-W. Cha, W.G. Colella, and F.B. Prinz, Fuel Cell Fundamentals, 1st ed. (Hoboken: Wiley, 2016).CrossRefGoogle Scholar
  3. 3.
    M. Boaro and A.S. Arico, eds., Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology (Cham: Springer, 2017) https://doi.org/10.1007/978-3-319-46146-5.Google Scholar
  4. 4.
    E.D. Wachsman and K.T. Lee, Science 334, 935 (2011).  https://doi.org/10.1126/science.1204090.CrossRefGoogle Scholar
  5. 5.
    J.M. Vohs and R.J. Gorte, Adv. Mater. 21, 943 (2009).  https://doi.org/10.1002/adma.200802428.CrossRefGoogle Scholar
  6. 6.
    J.T.S. Irvine, D. Neagu, M.C. Verbraeken, C. Chatzichristodoulou, C. Graves, and M.B. Mogensen, Nat. Energy 1, 15014 (2016).  https://doi.org/10.1038/nenergy.2015.14.CrossRefGoogle Scholar
  7. 7.
    J.H. Myung, D. Neagu, D.N. Miller, and J.T. Irvine, Nature (2016).  https://doi.org/10.1038/nature19090.Google Scholar
  8. 8.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater. Sci. 72, 141 (2015).  https://doi.org/10.1016/j.pmatsci.2015.01.001.CrossRefGoogle Scholar
  9. 9.
    X.M. Ge, S.H. Chan, Q.L. Liu, and Q. Sun, Adv. Energy Mater. 2, 1156 (2012).  https://doi.org/10.1002/aenm.201200342.CrossRefGoogle Scholar
  10. 10.
    A. Bertei, J.G. Pharoah, D.A.W. Gawel, and C. Nicolella, ECS Trans. 57, 2527 (2013).  https://doi.org/10.1149/05701.2527ecst.CrossRefGoogle Scholar
  11. 11.
    L. Holzer, B. Münch, B. Iwanschitz, M. Cantoni, T. Hocker, and T. Graule, J. Power Sources 196, 7076 (2011).  https://doi.org/10.1016/j.jpowsour.2010.08.006.CrossRefGoogle Scholar
  12. 12.
    M. Kishimoto, Y. Kawakami, Y. Otani, H. Iwai, and H. Yoshida, Scr. Mater. 140, 5 (2017).  https://doi.org/10.1016/j.scriptamat.2017.06.054.CrossRefGoogle Scholar
  13. 13.
    Y. Lu, P. Gasper, U.B. Pal, S. Gopalan, and S.N. Basu, J. Power Sources 396, 257 (2018).  https://doi.org/10.1016/j.jpowsour.2018.06.027.CrossRefGoogle Scholar
  14. 14.
    P. Gasper, Y. Lu, S.N. Basu, S. Gopalan, and U.B. Pal, J. Power Sources (2019).  https://doi.org/10.1016/j.jpowsour.2018.11.002.Google Scholar
  15. 15.
    A. Bertei, E. Ruiz-Trejo, K. Kareh, V. Yufit, X. Wang, F. Tariq, and N.P. Brandon, Nano Energy 38, 526 (2017).  https://doi.org/10.1016/j.nanoen.2017.06.028.CrossRefGoogle Scholar
  16. 16.
    T. Klemensø, K. Thydén, M. Chen, and H.J. Wang, J. Power Sources 195, 7295 (2010).  https://doi.org/10.1016/j.jpowsour.2010.05.047.CrossRefGoogle Scholar
  17. 17.
    P. Keyvanfar and V. Birss, J. Electrochem. Soc. 161, F660 (2014).  https://doi.org/10.1149/2.056405jes.CrossRefGoogle Scholar
  18. 18.
    E.F. Hardjo, D.S. Monder, and K. Karan, J. Electrochem. Soc. 161, F83 (2014).  https://doi.org/10.1149/2.036401jes.CrossRefGoogle Scholar
  19. 19.
    P.I. Cowin, C.T.G. Petit, R. Lan, J.T.S. Irvine, and S. Tao, Adv. Energy Mater. 1, 314 (2011).  https://doi.org/10.1002/aenm.201100108.CrossRefGoogle Scholar
  20. 20.
    T. Shimonosono, Y. Hirata, Y. Ehira, S. Sameshima, T. Horita, and H. Yokokawa, J. Ceram. Soc. Jpn. 112, 616 (2004).  https://doi.org/10.14852/jcersjsuppl.112.0.S616.0.Google Scholar
  21. 21.
    S.P. Jiang, Int. J. Hydrog. Energy 37, 449 (2012).  https://doi.org/10.1016/j.ijhydene.2011.09.067.CrossRefGoogle Scholar
  22. 22.
    Z. Liu, B. Liu, D. Ding, M. Liu, F. Chen, and C. Xia, J. Power Sources 237, 243 (2013).  https://doi.org/10.1016/j.jpowsour.2013.03.025.CrossRefGoogle Scholar
  23. 23.
    S.P. Jiang, Y.Y. Duan, and J.G. Love, J. Electrochem. Soc. 149, A1175 (2002).  https://doi.org/10.1149/1.1497982.CrossRefGoogle Scholar
  24. 24.
    T.L. Skafte, J. Hjelm, P. Blennow, and C. Graves, J. Power Sources 378, 685 (2018).  https://doi.org/10.1016/j.jpowsour.2018.01.021.CrossRefGoogle Scholar
  25. 25.
    E.C. Miller, Q. Sherman, Z. Gao, P.W. Voorhees, and S.A. Barnett, ECS Trans. 68, 1245 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Sun, J. Li, Y. Zeng, B.S. Amirkhiz, M. Wang, Y. Behnamian, and J. Luo, J. Mater. Chem. A 3, 11048 (2015).  https://doi.org/10.1039/C5TA01733E.CrossRefGoogle Scholar
  27. 27.
    R. Kiebach, P. Zielke, J.V.T. Hogh, K. Thyden, H.J. Wang, R. Barford, and P.V. Hendriksen, Fuel Cells (2016).  https://doi.org/10.1002/fuce.201500107.Google Scholar
  28. 28.
    R. Kiebach, C. Knöfel, F. Bozza, T. Klemensø, and C. Chatzichristodoulou, J. Power Sources 228, 170 (2013).  https://doi.org/10.1016/j.jpowsour.2012.11.070.CrossRefGoogle Scholar
  29. 29.
    Z. Jiao and N. Shikazono, Acta Mater. 135, 124 (2017).  https://doi.org/10.1016/j.actamat.2017.05.051.CrossRefGoogle Scholar
  30. 30.
    Z. Jiao and N. Shikazono, J. Power Sources 396, 119 (2018).  https://doi.org/10.1016/j.jpowsour.2018.06.001.CrossRefGoogle Scholar
  31. 31.
    A. Utz, H. Störmer, A. Leonide, A. Weber, and E. Ivers-Tiffée, J. Electrochem. Soc. 157, B920 (2010).  https://doi.org/10.1149/1.3383041.CrossRefGoogle Scholar
  32. 32.
    V. Sonn, A. Leonide, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, B675 (2008).  https://doi.org/10.1149/1.2908860.CrossRefGoogle Scholar
  33. 33.
    A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, B36 (2008).  https://doi.org/10.1149/1.2801372.CrossRefGoogle Scholar
  34. 34.
    K.J. Yoon, P. Zink, S. Gopalan, and U.B. Pal, J. Power Sources 172, 39 (2007).  https://doi.org/10.1016/j.jpowsour.2007.03.003.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringBoston UniversityBrooklineUSA
  2. 2.Boston University Photonics CenterBostonUSA
  3. 3.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations