Advertisement

JOM

pp 1–8 | Cite as

Effects of Tungsten-Carbide Particle Addition on Friction-Stir-Processed Fe50(CoCrMnNi)50 Medium-Entropy Alloy

  • Janu Ageng Nugroho
  • Dennis Edgard Jodi
  • Nokeun ParkEmail author
  • Sungwook Kim
  • Unhae LeeEmail author
  • Eung Ryul Baek
Progress in High-Entropy Alloys
  • 26 Downloads

Abstract

The Fe50(CoCrMnNi)50 medium-entropy alloy can be considered a bridging alloy between the multicomponent medium- and high-entropy alloys and conventional steels. In this study, the combined effect of friction stir processing (FSP) and addition of WC-rich particles on the microstructure and mechanical properties of Fe50(CoCrMnNi)50 was investigated. The parameters of tool rotation speed and stir speed of the FSP were fixed at 400 rpm and 0.3 mm/s, respectively. In the stir zone, formation of ultrafine grains was observed, owing to the interrelated combination of dynamic recrystallization by the FSP, particle-stimulated nucleation, and grain-coarsening inhibition by the WC-rich particles. The combined utilization of FSP and WC-rich particles significantly improved the mechanical properties of Fe50(CoCrMnNi)50, owing to the Hall–Petch grain boundary and particle hardening.

Notes

Acknowledgement

This study was supported by the National Research Foundation of Korea funded by the Korean government [Ministry of Science, ICT and Future Planning, MSIP; NRF-2015R1C1A1A01052856].

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    J.W. Yeh, Eur. J. Control 31, 633 (2006).Google Scholar
  2. 2.
    J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.Y. Gan, T.S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  3. 3.
    J.I. Lee, H.S. Oh, J.H. Kim, and E.S. Park, J. Korean Inst. Met. Mater. 55, 1 (2017).CrossRefGoogle Scholar
  4. 4.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
  5. 5.
    Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).CrossRefGoogle Scholar
  6. 6.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
  7. 7.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science (80-.) 345, 1153 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Kang, J.W. Won, K.R. Lim, S.H. Park, S.M. Seo, and Y.S. Na, J. Korean Inst. Met. Mater. 55, 732 (2017).Google Scholar
  9. 9.
    J.H. Kim and Y.S. Na, Met. Mater. Int. 25, 296 (2019).CrossRefGoogle Scholar
  10. 10.
    N. Park, B.J. Lee, and N. Tsuji, J. Alloys Compd. 719, 189 (2017).CrossRefGoogle Scholar
  11. 11.
    W.M. Choi, S. Jung, Y.H. Jo, S. Lee, and B.J. Lee, Met. Mater. Int. 23, 839 (2017).CrossRefGoogle Scholar
  12. 12.
    I. Ondicho, M. Choi, W. Choi, J. Bae, H. Reza, B. Lee, S. Ig, and N. Park, J. Alloys Compd. 785, 320 (2019).CrossRefGoogle Scholar
  13. 13.
    E.O. Hall, Proc. Phys. Soc. Lond. Sect. B 64, 747 (1951).CrossRefGoogle Scholar
  14. 14.
    N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).Google Scholar
  15. 15.
    M. Choi, I. Ondicho, N. Park, and N. Tsuji, J. Alloys Compd. 780, 959 (2019).CrossRefGoogle Scholar
  16. 16.
    J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
  17. 17.
    J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, and Z.P. Lu, Intermetallics 79, 41 (2016).CrossRefGoogle Scholar
  18. 18.
    X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, and Y. Wu, Mater. Sci. Eng., A 713, 134 (2018).CrossRefGoogle Scholar
  19. 19.
    R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng., R 50, 1 (2005).CrossRefGoogle Scholar
  20. 20.
    F.R. Cao, G.Q. Xue, B.J. Zhou, and S.C. Wang, Met. Mater. Int. 25, 570 (2019).CrossRefGoogle Scholar
  21. 21.
    R.S. Mishra, Z.Y. Ma, and I. Charit, Mater. Sci. Eng., A 341, 307 (2003).CrossRefGoogle Scholar
  22. 22.
    D. Yadav and R. Bauri, Mater. Sci. Eng., A 539, 85 (2012).CrossRefGoogle Scholar
  23. 23.
    Y.-B. Lim and K.-J. Lee, J. Weld. Join. 37, 35 (2019).CrossRefGoogle Scholar
  24. 24.
    J.-D. Kim, E.-G. Jin, S.P. Murugan, and Y.-D. Park, J. Weld. Join. 35, 6 (2017).CrossRefGoogle Scholar
  25. 25.
    X. Zheng, M. Li, C. Jin, R. Chen, W. Yin, X. Tang, F. Lei, Z. Wang, J. Ju, D. Lee, and A. Yan, J. Alloys Compd. 728, 607 (2017).CrossRefGoogle Scholar
  26. 26.
    D. Deng, H. Xia, and Y. Ge, Mater. Trans. 54, 2144 (2013).CrossRefGoogle Scholar
  27. 27.
    T.E. Mora and S.A. Spiewak, J. Manuf. Process. 5, 46 (2008).CrossRefGoogle Scholar
  28. 28.
    M.G. Jo, H.J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.Y. Suh, D.I. Kim, S.T. Hong, and H.N. Han, Met. Mater. Int. 24, 73 (2018).CrossRefGoogle Scholar
  29. 29.
    Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, and J. Wei, Mater. Sci. Eng., A 711, 524 (2018).CrossRefGoogle Scholar
  30. 30.
    J. Weidow and H.O. Andrén, Acta Mater. 58, 3888 (2010).CrossRefGoogle Scholar
  31. 31.
    Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, and C.H. Shek, Mater. Lett. 205, 142 (2017).CrossRefGoogle Scholar
  32. 32.
    T. Wang, S. Shukla, M. Komarasamy, K. Liu, and R.S. Mishra, Mater. Lett. 236, 472 (2019).CrossRefGoogle Scholar
  33. 33.
    G. Huang, J. Wu, W. Hou, Y. Shen, and J. Gao, Mater. Manuf. Process. 34, 147 (2019).CrossRefGoogle Scholar
  34. 34.
    R. Bauri, D. Yadav, and G. Suhas, Mater. Sci. Eng., A 528, 4732 (2011).CrossRefGoogle Scholar
  35. 35.
    A.A. Fallahi, A. Shokuhfar, A. Ostovari Moghaddam, and A. Abdolahzadeh, J. Manuf. Process. 30, 418 (2017).CrossRefGoogle Scholar
  36. 36.
    Y.F. Sun and H. Fujii, Mater. Sci. Eng., A 528, 5470 (2011).CrossRefGoogle Scholar
  37. 37.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Amsterdam: Elsevier, 2004).Google Scholar
  38. 38.
    R.P. De Siqueira, H.R.Z. Sandim, and D. Raabe, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 469 (2013).CrossRefGoogle Scholar
  39. 39.
    N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, and R.S. Mishra, JOM 67, 1007 (2015).CrossRefGoogle Scholar
  40. 40.
    R.W. Armstrong, Materials (Basel). 4, 1287 (2011).CrossRefGoogle Scholar
  41. 41.
    A.J. Ardell, Metall. Trans. A 16, 2131 (1985).CrossRefGoogle Scholar
  42. 42.
    Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai, Acta Mater. 138, 72 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYeungnam UniversityGyeongbukRepublic of Korea
  2. 2.Institute of Materials TechnologyYeungnam UniversityGyeongbukRepublic of Korea
  3. 3.Research Institute of Industrial Science and TechnologyPohangRepublic of Korea
  4. 4.POSCO Technical Research LaboratoriesGwangyangRepublic of Korea

Personalised recommendations