Advertisement

JOM

pp 1–8 | Cite as

Carbon Cathode Wear in Aluminium Electrolysis Cells

  • Samuel Senanu
  • Zhaohui Wang
  • Arne Petter RatvikEmail author
  • Tor Grande
Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • 38 Downloads

Abstract

Autopsies of six spent potlinings with different carbon cathode block grades, amperage regimes and cell designs were conducted at three separate smelters to reveal possible mechanisms causing cathode wear. The microstructure of the cathode samples from the autopsies was investigated by optical and electron microscopy and x-ray computed tomography, while the composition of the solid bath at the surface and in the interior pores was investigated by x-ray diffraction and electron microscopy. The present findings revealed that the cathode surface was characterized by a wear pattern resembling pitting corrosion, and it is discussed that the observed variations in the bath chemistry play a major role in the wear mechanism and the pitting of the surface. A hypothesis involving initiation and termination of the main reaction causing the cathode wear is proposed based on the effect of the consumption of aluminium fluoride in the molten bath layer between the carbon and the molten aluminium pad, resulting in partial solidification of the bath and spatial variation of the current density.

Notes

Acknowledgements

Financial support from the Norwegian Research Council and the partners Hydro, Alcoa, Elkem Carbon and Skamol through the project “CaRMa—Reactivity of Carbon and Refractory Materials Used in Metal Production Technology” is acknowledged (Grant No. 236665).

References

  1. 1.
    P. Rafiei, F. Hiltmann, M. Hyland, B. James, and B. Welch, Light Met. 2001, 747 (2001).Google Scholar
  2. 2.
    F. Gao, N. Feng, J. Yang, Q. Niu, H. He, and L. Han, Light Met. 2012, 1355 (2012).Google Scholar
  3. 3.
    M. Sørlie and H.A. Øye, Cathodes in Aluminium Electrolysis, 3rd ed. (Düsseldorf: Aluminium-Verlag, 2010).Google Scholar
  4. 4.
    A.T. Tabereaux, J.H. Brown, I.J. Eldridge, and T.R. Alcorn, Light Met. 1999, 187 (1999).Google Scholar
  5. 5.
    P. Reny and S. Wilkening, Light Met. 2000, 399 (2000).Google Scholar
  6. 6.
    S. Senanu, T. Grande, and A.P. Ratvik, ICSOBA 41, 787 (2016).Google Scholar
  7. 7.
    S. Senanu, C. Schøning, S. Rørvik, Z.H. Wang, A.P. Ratvik, and T. Grande, Light Met. 2017, 561 (2017).Google Scholar
  8. 8.
    S. Wilkening, P. Reny, and B. Murphy, Light Met. 2005, 367 (2005).Google Scholar
  9. 9.
    J.M. Dreyfus and L. Joncourt, Light Met. 1999, 199 (1999).Google Scholar
  10. 10.
    K. Tschöpe, A. Støre, E. Skybakmoen, A. Solheim, T. Grande, and A.P. Ratvik, Light Met. 2013, 1251 (2013).Google Scholar
  11. 11.
    P. Patel, M. Hyland, and F. Hiltmann, Light Met. 2005, 757 (2005).Google Scholar
  12. 12.
    L.P. Lossius and H.A. Øye, Metall Trans B 31, 1213 (2000).CrossRefGoogle Scholar
  13. 13.
    E.F. Siew, T. Ireland-Hay, G.T. Stephens, J.J.J. Chen, and M.P. Taylor, Light Met. 2005, 763 (2005).Google Scholar
  14. 14.
    S. Senanu, T. Grande, and A.P. Ratvik, ICSOBA 43, 643 (2018).Google Scholar
  15. 15.
    M. Sørlie, J. Hvistendahl, and H.A. Oye, Light Met. 1993, 299 (1993).Google Scholar
  16. 16.
    M. McClung and R. Zerkle, Light Met. 2004, 213 (2004).Google Scholar
  17. 17.
    R. Jeltsch, Light Met. 2009, 1079 (2009).Google Scholar
  18. 18.
    K. Tschöpe, C. Schøning, J. Rutlin, and T. Grande, Metall Trans B 43, 290 (2012).CrossRefGoogle Scholar
  19. 19.
    K. Tschöpe, C. Schøning, and T. Grande, Light Met. 2009, 1085 (2009).Google Scholar
  20. 20.
    E. Skybakmoen, S. Rørvik, A. Solheim, K.R. Holm, P. Tiefenbach, and Ø. Østrem, Light Met. 2011, 1061 (2011).Google Scholar
  21. 21.
    J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and A. Sterten, Aluminium Electrolysis: Fundamentals of the Hall–Héroult Process, 3rd ed. (Düsseldorf: Aluminium-Verlag Marketing, 2001).Google Scholar
  22. 22.
    D.F. Craig and J.J. Brown, J. Am. Ceram. Soc. 63, 254 (1980).CrossRefGoogle Scholar
  23. 23.
    S. Wilkening and P. Reny, Light Met. 2004, 597 (2004).Google Scholar
  24. 24.
    R. Ødegard, A. Sterten, and J. Thonstad, Met Trans B 19, 449 (1988).CrossRefGoogle Scholar
  25. 25.
    K. Tschöpe, A. Støre, A. Solheim, E. Skybakmoen, T. Grande, and A.P. Ratvik, JOM 65, 1403 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringNTNU Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF IndustryTrondheimNorway

Personalised recommendations