pp 1–10 | Cite as

High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys

  • Youxing ChenEmail author
  • Eric HintsalaEmail author
  • Nan Li
  • Bernard R. Becker
  • Justin Y. Cheng
  • Bartosz Nowakowski
  • Jordan Weaver
  • Douglas Stauffer
  • Nathan A. Mara
New Developments in Nanomechanical Methods


Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation AlxFeCrNiMn (x = 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al0.3FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.



NAM and Y. Chen gratefully acknowledge financial support from Bruker Nano Surfaces. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC, for the US Department of Energy’s NNSA, under Contract 89233218CNA000001.

Supplementary material

11837_2019_3714_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 85 kb)


  1. 1.
    B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A 375, 213 (2004).CrossRefGoogle Scholar
  2. 2.
    C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, and S. Shi, Nat. Commun. 7, 13564 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Guérin, G.S. Was, and S.J. Zinkle, MRS Bull. 34, 10 (2009).Google Scholar
  4. 4.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  5. 5.
    M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Y. Champion, Acta Mater. 88, 355 (2015).CrossRefGoogle Scholar
  6. 6.
    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Nature 534, 227 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).CrossRefGoogle Scholar
  8. 8.
    M.A. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, and P. Liaw, Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
  9. 9.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, and G.D. Samolyuk, Nat. Commun. 6, 8736 (2015).CrossRefGoogle Scholar
  11. 11.
    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L. Wang, F. Djurabekova, W. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle Scholar
  12. 12.
    B. Kombaiah, K. Jin, H. Bei, P.D. Edmondson, and Y. Zhang, Mater. Des. 160, 1208 (2018).CrossRefGoogle Scholar
  13. 13.
    O. El-Atwani, N. Li, M. Li, A. Devaraj, J. Baldwin, M. Schneider, D. Sobieraj, J. Wróbel, D. Nguyen-Manh, and S. Maloy, Sci. Adv. 5, eaav2002 (2019).CrossRefGoogle Scholar
  14. 14.
    F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
  15. 15.
    O. Senkov, J. Miller, D. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).CrossRefGoogle Scholar
  16. 16.
    Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, J. Alloys Compd. 488, 57 (2009).CrossRefGoogle Scholar
  17. 17.
    N. Stepanov, D. Shaysultanov, R. Chernichenko, M. Tikhonovsky, and S. Zherebtsov, J. Alloys Compd. 770, 194 (2019).CrossRefGoogle Scholar
  18. 18.
    O. Senkov, S. Senkova, and C. Woodward, Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
  19. 19.
    F. Wang, Y. Zhang, and G. Chen, J. Alloys Compd. 478, 321 (2009).CrossRefGoogle Scholar
  20. 20.
    T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, and Y. Wang, Sci. Rep. 6, 32146 (2016).CrossRefGoogle Scholar
  21. 21.
    G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2016).Google Scholar
  22. 22.
    W. Wen, L. Capolungo, A. Patra, and C. Tomé, Metall. Mater. Trans. A 48, 2603 (2017).CrossRefGoogle Scholar
  23. 23.
    S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).CrossRefGoogle Scholar
  24. 24.
    A. Munitz, L. Meshi, and M. Kaufman, Mater. Sci. Eng. A 689, 384 (2017).CrossRefGoogle Scholar
  25. 25.
    E.D. Hintsala, U. Hangen, and D.D. Stauffer, JOM 70, 494 (2018).CrossRefGoogle Scholar
  26. 26.
    U.D. Hangen, D.D. Stauffer, and S.S. Asif, Nanomechanical Analysis of High Performance Materials, Vol. 85 (Berlin: Springer, 2014).Google Scholar
  27. 27.
    K. Johnson, Contact Mechanics (Cambridge: Cambridge University Press, 1985).CrossRefzbMATHGoogle Scholar
  28. 28.
    K.P. Murphy, Machine Learning: A Probabilistic Perspective (Cambridge: MIT Press, 2012).zbMATHGoogle Scholar
  29. 29.
    F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, J. Mach. Learn. Res. 12, 2825 (2011).MathSciNetGoogle Scholar
  30. 30.
    N.K. Kumar, C. Li, K. Leonard, H. Bei, and S. Zinkle, Acta Mater. 113, 230 (2016).CrossRefGoogle Scholar
  31. 31.
    S.J. Zinkle and L.L. Snead, Annu. Rev. Mater. Res. 44, 241 (2014).CrossRefGoogle Scholar
  32. 32.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
  33. 33.
    W.-R. Wang, W.-L. Wang, and J.-W. Yeh, J. Alloys Compd. 589, 143 (2014).CrossRefGoogle Scholar
  34. 34.
    C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, and S.-K. Chen, Mater. Sci. Eng. A 528, 3581 (2011).CrossRefGoogle Scholar
  35. 35.
    C. Elkan. in Proceedings of the 20th International Conference on Machine Learning (ICML-03). 147.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Engineering ScienceUniversity of North CarolinaCharlotteUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  3. 3.Bruker Nano SurfacesEden PrairieUSA
  4. 4.MPA-CINT, Los Alamos National LaboratoryLos AlamosUSA
  5. 5.Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations