Advertisement

JOM

, Volume 71, Issue 11, pp 3859–3868 | Cite as

Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys

  • Tianju Chen
  • Ridwan Sakidja
  • Wai-Yim Ching
  • Caizhi ZhouEmail author
Crystal Orientation Dependence of Mechanical and Thermal Properties in Functional Nanomaterials
  • 182 Downloads

Abstract

In this work, we explore the effect of misorientation angles of crystal orientations between two grains along the grain boundary (GB) on void growth behavior in polycrystalline Ni-based superalloys by using a crystal plasticity finite element method. Quantitative analysis is conducted to study the coupled roles of the crystal orientation and stress triaxiality in void growth in bicrystals. Based on our simulation results, we find that, as the main loading axis perpendicular to the GB, voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystal samples with twist GBs, while the void growth in single- and bicrystal samples with twist GBs exhibited almost the same rate and increased with the stress triaxiality levels. The interaction between two crystals bonded with the GB activates the effective Schmid factors in each crystal, which results in asymmetric distribution of the equivalent plastic strain around the void and induces distinct irregularly shaped voids during deformation.

Notes

Acknowledgements

This work was supported by grants from the DOE-NETL Crosscutting Research Program (No. FE0031554).

References

  1. 1.
    R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press, 2008), pp. 217–271.Google Scholar
  2. 2.
    F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, and S. Primig, Acta Mater. 156, 116 (2018).CrossRefGoogle Scholar
  3. 3.
    Z. Tarzimoghadam, D. Ponge, J. Klöwer, and D. Raabe, Acta Mater. 128, 365 (2017).CrossRefGoogle Scholar
  4. 4.
    T. Gibbons and B. Hopkins, Met. Sci. 18, 273 (1984).CrossRefGoogle Scholar
  5. 5.
    G. Zhu, F. Liu, X. Li, J. Pang, Z. Zhang, P. Li, Y. Zhou, and Z. Zhang, Adv. Eng. Mater. 21, 1800856 (2019).CrossRefGoogle Scholar
  6. 6.
    J.R. Rice and D.M. Tracey, J. Mech. Phys. Solid 17, 201 (1969).CrossRefGoogle Scholar
  7. 7.
    A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977).CrossRefGoogle Scholar
  8. 8.
    V. Tvergaard and A. Needleman, Acta Metall. 32, 157 (1984).CrossRefGoogle Scholar
  9. 9.
    M. Kuna and D. Sun, Int. J. Fatigue 81, 235 (1996).Google Scholar
  10. 10.
    T. Pardoen, I. Doghri, and F. Delannay, Acta Mater. 46, 541 (1998).CrossRefGoogle Scholar
  11. 11.
    Y. Shi, Eng. Fract. Mech. 34, 901 (1989).CrossRefGoogle Scholar
  12. 12.
    T. Oregan, D. Quinn, M. Howe, and P. McHugh, Comput. Mech. 20, 115 (1997).CrossRefGoogle Scholar
  13. 13.
    D. Quinn, P. Connolly, M. Howe, and P. McHugh, Int. J. Mech. Sci. 39, 173 (1997).CrossRefGoogle Scholar
  14. 14.
    J.Y. Shu, Int. J. Plast 14, 1085 (1998).CrossRefGoogle Scholar
  15. 15.
    V. Tvergaard and C. Niordson, Int. J. Plast. 20, 107 (2004).CrossRefGoogle Scholar
  16. 16.
    J. Wen, Y. Huang, K. Hwang, C. Liu, and M. Li, Int. J. Plast. 21, 381 (2005).CrossRefGoogle Scholar
  17. 17.
    V. Orsini and M. Zikry, Int. J. Plast. 17, 1393 (2001).CrossRefGoogle Scholar
  18. 18.
    G. Potirniche, J. Hearndon, M. Horstemeyer, and X. Ling, Int. J. Plast. 22, 921 (2006).CrossRefGoogle Scholar
  19. 19.
    Q. Yu, N. Hou, and Z. Yue, Comput. Mater. Sci. 48, 597 (2010).CrossRefGoogle Scholar
  20. 20.
    E.B. Marin, Report No. SAND2006-4170, Sandia National Laboratories, 2006.Google Scholar
  21. 21.
    A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. Molina-Aldareguia, J. Llorca, and J. Segurado, Acta Mater. 98, 242 (2015).CrossRefGoogle Scholar
  22. 22.
    C. Tome, G. Canova, U. Kocks, N. Christodoulou, and J. Jonas, Acta Metall. 32, 1637 (1984).CrossRefGoogle Scholar
  23. 23.
    A. Srivastava and A. Needleman, Mech. Mater. 90, 10 (2015).CrossRefGoogle Scholar
  24. 24.
    V.V. Bulatov, B.W. Reed, and M. Kumar, Acta Mater. 65, 161 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Srivastava and A. Needleman, Model. Simul. Mater. Sci. Eng. 20, 035010 (2012).CrossRefGoogle Scholar
  26. 26.
    S.K. Yerra, C. Tekoğlu, F. Scheyvaerts, L. Delannay, P. Van Houtte, and T. Pardoen, Int. J. Solids Struct. 47, 1016 (2010).CrossRefGoogle Scholar
  27. 27.
    C. Ling, S. Forest, J. Besson, B. Tanguy, and F. Latourte, Int. J. Solids Struct. 134, 43 (2018).CrossRefGoogle Scholar
  28. 28.
    K.S. Zhang, J.B. Bai, and D. François, Int. J. Solids Struct. 38, 5847 (2001).CrossRefGoogle Scholar
  29. 29.
    M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials (Cambridge: Cambridge University Press, 2008), pp. 381–392.CrossRefGoogle Scholar
  30. 30.
    R.J. Asaro, Adv. Appl. Mech. 23, 1 (1983).CrossRefGoogle Scholar
  31. 31.
    I.J. Beyerlein and L.S. Tóth, Prog. Mater. Sci. 54, 427 (2009).CrossRefGoogle Scholar
  32. 32.
    X. Zhang, Y. Mu, M. Dodaran, S. Shao, D. Moldovan, and W.J. Meng, Acta Mater. 160, 1 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of Physics, Astronomy and Materials ScienceMissouri State UniversitySpringfieldUSA
  3. 3.Department of Physics and AstronomyUniversity of Missouri Kansas CityKansas CityUSA

Personalised recommendations