Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys
- 182 Downloads
Abstract
In this work, we explore the effect of misorientation angles of crystal orientations between two grains along the grain boundary (GB) on void growth behavior in polycrystalline Ni-based superalloys by using a crystal plasticity finite element method. Quantitative analysis is conducted to study the coupled roles of the crystal orientation and stress triaxiality in void growth in bicrystals. Based on our simulation results, we find that, as the main loading axis perpendicular to the GB, voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystal samples with twist GBs, while the void growth in single- and bicrystal samples with twist GBs exhibited almost the same rate and increased with the stress triaxiality levels. The interaction between two crystals bonded with the GB activates the effective Schmid factors in each crystal, which results in asymmetric distribution of the equivalent plastic strain around the void and induces distinct irregularly shaped voids during deformation.
Notes
Acknowledgements
This work was supported by grants from the DOE-NETL Crosscutting Research Program (No. FE0031554).
References
- 1.R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press, 2008), pp. 217–271.Google Scholar
- 2.F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, and S. Primig, Acta Mater. 156, 116 (2018).CrossRefGoogle Scholar
- 3.Z. Tarzimoghadam, D. Ponge, J. Klöwer, and D. Raabe, Acta Mater. 128, 365 (2017).CrossRefGoogle Scholar
- 4.T. Gibbons and B. Hopkins, Met. Sci. 18, 273 (1984).CrossRefGoogle Scholar
- 5.G. Zhu, F. Liu, X. Li, J. Pang, Z. Zhang, P. Li, Y. Zhou, and Z. Zhang, Adv. Eng. Mater. 21, 1800856 (2019).CrossRefGoogle Scholar
- 6.J.R. Rice and D.M. Tracey, J. Mech. Phys. Solid 17, 201 (1969).CrossRefGoogle Scholar
- 7.A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977).CrossRefGoogle Scholar
- 8.V. Tvergaard and A. Needleman, Acta Metall. 32, 157 (1984).CrossRefGoogle Scholar
- 9.M. Kuna and D. Sun, Int. J. Fatigue 81, 235 (1996).Google Scholar
- 10.T. Pardoen, I. Doghri, and F. Delannay, Acta Mater. 46, 541 (1998).CrossRefGoogle Scholar
- 11.Y. Shi, Eng. Fract. Mech. 34, 901 (1989).CrossRefGoogle Scholar
- 12.T. Oregan, D. Quinn, M. Howe, and P. McHugh, Comput. Mech. 20, 115 (1997).CrossRefGoogle Scholar
- 13.D. Quinn, P. Connolly, M. Howe, and P. McHugh, Int. J. Mech. Sci. 39, 173 (1997).CrossRefGoogle Scholar
- 14.J.Y. Shu, Int. J. Plast 14, 1085 (1998).CrossRefGoogle Scholar
- 15.V. Tvergaard and C. Niordson, Int. J. Plast. 20, 107 (2004).CrossRefGoogle Scholar
- 16.J. Wen, Y. Huang, K. Hwang, C. Liu, and M. Li, Int. J. Plast. 21, 381 (2005).CrossRefGoogle Scholar
- 17.V. Orsini and M. Zikry, Int. J. Plast. 17, 1393 (2001).CrossRefGoogle Scholar
- 18.G. Potirniche, J. Hearndon, M. Horstemeyer, and X. Ling, Int. J. Plast. 22, 921 (2006).CrossRefGoogle Scholar
- 19.Q. Yu, N. Hou, and Z. Yue, Comput. Mater. Sci. 48, 597 (2010).CrossRefGoogle Scholar
- 20.E.B. Marin, Report No. SAND2006-4170, Sandia National Laboratories, 2006.Google Scholar
- 21.A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. Molina-Aldareguia, J. Llorca, and J. Segurado, Acta Mater. 98, 242 (2015).CrossRefGoogle Scholar
- 22.C. Tome, G. Canova, U. Kocks, N. Christodoulou, and J. Jonas, Acta Metall. 32, 1637 (1984).CrossRefGoogle Scholar
- 23.A. Srivastava and A. Needleman, Mech. Mater. 90, 10 (2015).CrossRefGoogle Scholar
- 24.V.V. Bulatov, B.W. Reed, and M. Kumar, Acta Mater. 65, 161 (2014).CrossRefGoogle Scholar
- 25.A. Srivastava and A. Needleman, Model. Simul. Mater. Sci. Eng. 20, 035010 (2012).CrossRefGoogle Scholar
- 26.S.K. Yerra, C. Tekoğlu, F. Scheyvaerts, L. Delannay, P. Van Houtte, and T. Pardoen, Int. J. Solids Struct. 47, 1016 (2010).CrossRefGoogle Scholar
- 27.C. Ling, S. Forest, J. Besson, B. Tanguy, and F. Latourte, Int. J. Solids Struct. 134, 43 (2018).CrossRefGoogle Scholar
- 28.K.S. Zhang, J.B. Bai, and D. François, Int. J. Solids Struct. 38, 5847 (2001).CrossRefGoogle Scholar
- 29.M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials (Cambridge: Cambridge University Press, 2008), pp. 381–392.CrossRefGoogle Scholar
- 30.R.J. Asaro, Adv. Appl. Mech. 23, 1 (1983).CrossRefGoogle Scholar
- 31.I.J. Beyerlein and L.S. Tóth, Prog. Mater. Sci. 54, 427 (2009).CrossRefGoogle Scholar
- 32.X. Zhang, Y. Mu, M. Dodaran, S. Shao, D. Moldovan, and W.J. Meng, Acta Mater. 160, 1 (2018).CrossRefGoogle Scholar