Advertisement

JOM

, Volume 71, Issue 12, pp 4600–4607 | Cite as

Process and Kinetic Assessment of Vanadium Extraction from Vanadium Slag Using Calcification Roasting and Sodium Carbonate Leaching

  • Guozhi Lu
  • Tingan ZhangEmail author
  • Guoquan Zhang
  • Weiguang Zhang
  • Ying Zhang
  • Zhihe Dou
  • Long Wang
  • Yanxiu Wang
  • Gang Xie
Rare Metal Recovery from Secondary Resources
  • 75 Downloads

Abstract

The leaching process of vanadium from the calcification-roasted vanadium slag by sodium carbonate was researched. The effect of the main parameters on the sodium carbonate leaching process was investigated, and a kinetics analysis for the process using a new shrinking core model is presented. The results indicate that the leaching rate of vanadium significantly depends on the leaching temperature. Under the conditions of 6% CaO additive content in the roasted samples, 10:1 ml g−1 liquid–solid ratio, 80 g L−1 Na2CO3, and 30 min at 90°C, the leaching rate of vanadium is 86.64%. The clean and efficient utilization of vanadium slag can be achieved by the calcification roasting and sodium carbonate leaching process. Scanning electron microscopy/energy dispersive x-ray spectroscopy analysis shows that the vanadium slag can be effectively leached by sodium carbonate with few impurities drawn into the solution. The leaching kinetics of this process shows that the interfacial transfer and diffusion across the product layer affect the leaching at the same time. Moreover, the calculated activation energy of the leaching process is 40.93 kJ/mol, and the reaction order of the sodium carbonate concentration is 0.49.

Notes

Acknowledgements

This research was financial supported by the National Natural Science Foundation of China (Nos. 51874078, U1710257, 51874094), State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006), Fundamental Research Funds for the Central Universities of China (Nos. N182505038, N140203005, N140204015), Shenyang Science and Technology Project (17-500-8-01, Z18-5-022), Science and Technology Leading Talents Training Plan (2017HA012).

Supplementary material

11837_2019_3672_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 388 kb)

References

  1. 1.
    R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).CrossRefGoogle Scholar
  2. 2.
    G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, and W.G. Zhang, JOM 68, 577 (2016).CrossRefGoogle Scholar
  3. 3.
    G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, and Z.L. Liu, Int. J. Min. Met. Mater. 22, 21 (2015).CrossRefGoogle Scholar
  4. 4.
    Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, Hydrometallrugy 109, 116 (2011).CrossRefGoogle Scholar
  5. 5.
    L. Jia, Y.M. Zhang, T. Liu, J. Huang, and S.X. Bao, J. Clean. Prod. 22, 21 (2015).Google Scholar
  6. 6.
    M.Y. Wang, X.Y. Xiang, L.P. Zhang, and L.S. Xiao, Rare Met. 27, 112 (2008).CrossRefGoogle Scholar
  7. 7.
    Z.H. Sun, Ironsteelvanad. Titan. 33, 1 (2012).Google Scholar
  8. 8.
    D.S. He, Q.M. Feng, G.F. Zhang, L.M. Ou, and Y.P. Lu, Miner. Eng. 20, 1184 (2007).CrossRefGoogle Scholar
  9. 9.
    X.S. Li and B. Xie, Int. J. Miner. Metall. Mater. 19, 595 (2012).CrossRefGoogle Scholar
  10. 10.
    X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Trans. Nonferrous Met. Soc. China 21, 1860 (2011).CrossRefGoogle Scholar
  11. 11.
    S.M.J. Mirazimi, F. Rashchi, and M. Saba, Sep. Purif. Technol. 116, 175 (2013).CrossRefGoogle Scholar
  12. 12.
    S.Y. Zhao, Research on Calcified Technology of Vanadium Extraction from Vanadium Slag (Boston: Northeast. Univ., 2012), pp. 8–10.Google Scholar
  13. 13.
    M.Y. Wang, L.S. Xiao, Q.G. Li, X.W. Wang, and X.Y. Xiang, Rare Met. 28, 1 (2009).CrossRefGoogle Scholar
  14. 14.
    H.L. Zhao, G.Q. Zhang, G.Z. Lyu, and T.A. Zhang, J. Northeastern Univ. (Nat. Sci.) 35, 1288 (2014).Google Scholar
  15. 15.
    P.H. Ye, X.W. Wang, M.Y. Wang, Y.Y. Fan, and X.Y. Xiang, Hydrometallurgy 2012, 108 (2012).CrossRefGoogle Scholar
  16. 16.
    X.B. Zhu, Y.M. Zhang, J. Huang, T. Liu, and Y. Wang, Int. J. Miner. Process 21, 114 (2012).Google Scholar
  17. 17.
    Y. Zhang, T.A. Zhang, G.Z. Lv, G.Q. Zhang, Y. Liu, and W.G. Zhang, Hydrometallurgy 166, 87 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, T.A. Zhang, D. Dreisinger, W.H. Zhou, F. Xie, G.Z. Lv, and W.G. Zhang, Sep. Purif. Technol. 190, 123 (2018).CrossRefGoogle Scholar
  19. 19.
    Y.L. Zhao, Y.M. Zhang, T. Liu, T.J. Chen, Y. Bian, and S.X. Bao, Int. J. Miner. Process. 121, 1 (2013).CrossRefGoogle Scholar
  20. 20.
    H.Y. Li, K. Wang, W.H. Hua, Z. Yang, W. Zhou, and B. Xie, Hydrometallurgy 160, 18 (2016).CrossRefGoogle Scholar
  21. 21.
    Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie, Int. J. Miner. Process. 133, 105 (2014).CrossRefGoogle Scholar
  22. 22.
    J.H. Zhang, W. Zhang, Y.X. Yang, L. Zhang, and L. Zhang, J. Northeast. Univ.(Nat. Sci.) 35, 831 (2014).Google Scholar
  23. 23.
    W.C. Song, H. Li, F.X. Zhu, K. Li, and Q. Zheng, Trans. Nonferrous Met. Soc. China 24, 2687 (2014).CrossRefGoogle Scholar
  24. 24.
    X.Y. Zou, Q.J. Peng, Y.Z. Ouyang, and R.G. Tian, Chin. J. Process Eng. 1, 189 (2001).Google Scholar
  25. 25.
    S.X. Xia, R. Lin, X. Cui, and J. Shan, Int. J. Hydrogen Energy 41, 11380 (2016).CrossRefGoogle Scholar
  26. 26.
    L. Wang, T.A. Zhang, G.Z. Lv, Z.H. Dou, W.G. Zhang, J.J. Zhang, L.P. Niu, and Y. Liu, Miner. Eng. 130, 85 (2019).CrossRefGoogle Scholar
  27. 27.
    G.Q. Zhang, T.A. Zhang, and G.Z. Lv, JOM 68, 577 (2015).CrossRefGoogle Scholar
  28. 28.
    G.Q. Zhang, D. Luo, C. Deng, L. Lv, and B. Liang, J. Alloys Compd. 742, 504 (2018).CrossRefGoogle Scholar
  29. 29.
    Y.K. Huang, Z.H. Dou, and T.A. Zhang, Hydrometallurgy 173, 15 (2017).CrossRefGoogle Scholar
  30. 30.
    R.J. Ma, Principle on Hydrometallurgy (Beijing: Metallurgical Industry Press, 2007), pp. 321–352. in Chinese.Google Scholar
  31. 31.
    C.F. Dickinson and G.R. Heal, Thermochim. Acta 340–341, 89 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Guozhi Lu
    • 1
  • Tingan Zhang
    • 1
    Email author
  • Guoquan Zhang
    • 1
  • Weiguang Zhang
    • 1
  • Ying Zhang
    • 1
  • Zhihe Dou
    • 1
  • Long Wang
    • 1
  • Yanxiu Wang
    • 1
  • Gang Xie
    • 2
  1. 1.Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of Education, School of Materials and MetallurgyNortheastern UniversityShenyangChina
  2. 2.State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal ResourcesKunming Metallurgical Research InstituteKunmingChina

Personalised recommendations