Advertisement

JOM

, Volume 71, Issue 9, pp 3094–3106 | Cite as

A Critical Review on the Electromigration Effect, the Electroplastic Effect, and Perspectives on the Effects of Electric Current Upon Alloy Phase Stability

  • Yu-chen Liu
  • Shih-kang LinEmail author
Advanced Electronic Interconnection

Abstract

The electronic interconnections in the state-of-the-art integrated circuit manufacturing have been scaled down to the micron or sub-micron scale. This results in a dramatic increase in the current density passing through interconnections, which means that the electromigration (EM) effect plays a significant role in the reliability of products. Although thorough studies and reviews of EM effects have been continuously conducted in the past 60 years, some parts of EM theories lack clear elucidation of the electric current-induced non-directional effects, including electric current-induced phase equilibrium changes. This review article is intended to provide a broad picture of electric current-induced lattice stability changes and to summarize the existing literature on EM-related phenomena, EM-related theoretical models, and relevant effects of the electroplastic (EP) effect in order to lead to a better understanding of electric current-induced effects on materials. This article also posits that EM is either part of the EP effect or shares the intrinsic electric current-induced plastic deformation associated with the EP effect. This concept appears to contribute to the missing parts of the EM theories.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology (MOST) in Taiwan (MOST 103-2221-E-006-043-MY3 and 106-2628-E-006-002-MY3).

Authors’ Contributions

YCL collected important papers and made a first draft of the article with the guidance of SKL. SKL modified and revised it for publication. All authors read and approved the final manuscript.

References

  1. 1.
    D. Shahrjerdi and S.W. Bedell, Nano Letters 13, 315–320 (2013).Google Scholar
  2. 2.
    K.N. Tu, Y. Liu, and M. Li, Appl. Phys. Rev. 4, 011101 (2017).Google Scholar
  3. 3.
    A. Lancaster and M. Keswani, Integration 60, 204–212 (2018).Google Scholar
  4. 4.
    F.M. d’Heurle, Proc. IEEE 59, 1409–1418 (1971).Google Scholar
  5. 5.
    T. Kwok, Mater. Chem. Phys. 33, 176–188 (1993).Google Scholar
  6. 6.
    D. Malone and R. Hummel, Crit. Rev. Solid State 22, 199–238 (1997).Google Scholar
  7. 7.
    D. Pierce and P. Brusius, Microelectron. Reliab. 37, 1053–1072 (1997).Google Scholar
  8. 8.
    E.T. Ogawa, K.-D. Lee, V.A. Blaschke, and P.S. Ho, IEEE Trans. Reliab. 51, 403–419 (2002).Google Scholar
  9. 9.
    K. Zeng and K.-N. Tu, Mater. Sci. Eng. R 38, 55–105 (2002).Google Scholar
  10. 10.
    C.M. Tan and A. Roy, Mater. Sci. Eng. R 58, 1–75 (2007).Google Scholar
  11. 11.
    C.Y. Liu, C. Chen, and K.N. Tu, J. Appl. Phys. 88, 5703–5709 (2000).Google Scholar
  12. 12.
    H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).Google Scholar
  13. 13.
    S.-W. Chen, C.-M. Chen, and W.-C. Liu, J. Electron. Mater. 27, 1193–1199 (1998).Google Scholar
  14. 14.
    H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76–87 (1961).Google Scholar
  15. 15.
    R.S. Sorbello, Solid State Phys. 51, 159–231 (1997).Google Scholar
  16. 16.
    C. Bosvieux and J. Friedel, J. Phys. Chem. Solids 23, 123–136 (1962).Google Scholar
  17. 17.
    Y.T. Chiu, C.H. Liu, K.L. Lin, and Y.S. Lai, Scripta Mater. 65, 615–617 (2011).Google Scholar
  18. 18.
    Y. Jiang, G. Tang, C. Shek, Y. Zhu, and Z. Xu, Acta Mater. 57, 4797–4808 (2009).Google Scholar
  19. 19.
    C.M. Chen and S.W. Chen, J. Electron. Mater. 29, 1222–1228 (2000).Google Scholar
  20. 20.
    P.-C. Wang, G. Cargill III, I. Noyan, and C.-K. Hu, Appl. Phys. Lett. 72, 1296–1298 (1998).Google Scholar
  21. 21.
    H. Zhang, G. Cargill III, Y. Ge, A. Maniatty, and W. Liu, J. Appl. Phys. 104, 123533 (2008).Google Scholar
  22. 22.
    H.-K. Kao, G.S. Cargill III, F. Giuliani, and C.-K. Hu, J. Appl. Phys. 93, 2516–2527 (2003).Google Scholar
  23. 23.
    K. Chen, N. Tamura, M. Kunz, K.N. Tu, and Y.-S. Lai, J. Appl. Phys. 106, 023502 (2009).Google Scholar
  24. 24.
    S.-K. Lin, Y.-C. Liu, S.-J. Chiu, Y.-T. Liu, and H.-Y. Lee, Sci. Rep. 7, 3082 (2017).Google Scholar
  25. 25.
    B.C. Valek, N. Tamura, R. Spolenak, W.A. Caldwell, A.A. MacDowell, R.S. Celestre, H.A. Padmore, J.C. Bravman, B.W. Batterman, W.D. Nix, and J.R. Patel, J. Appl. Phys. 94, 3757–3761 (2003).Google Scholar
  26. 26.
    A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, and J.R. Patel, Appl. Phys. Lett. 88, 233515 (2006).Google Scholar
  27. 27.
    Y.-T. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and Y.-S. Lai, J. Alloys Compd. 549, 190–194 (2013).Google Scholar
  28. 28.
    A.T. Wu, A.M. Gusak, K.N. Tu, and C.R. Kao, Appl. Phys. Lett. 86, 241902 (2005).Google Scholar
  29. 29.
    P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).Google Scholar
  30. 30.
    F.M. D’Heurle and R. Rosenberg, Physics of Thin Films, ed. G. Hass, M.H. Francombe, and R.W. Hoffman (Amsterdam: Elsevier, 1973), pp. 257–310.Google Scholar
  31. 31.
    H. Huntington, Diffusion in solids: recent developments, ed. A.S. Nowick and J.J. Burton (Amsterdam: Elsevier, 1975), pp. 303–352.Google Scholar
  32. 32.
    K.-N. Tu, Solder Joint Technology, ed. K.-N. Tu (New York: Springer, 2007), pp. 211–243.Google Scholar
  33. 33.
    J. van Ek, J.P. Dekker, and A. Lodder, Phys. Rev. B 52, 8794–8800 (1995).Google Scholar
  34. 34.
    J.P. Dekker, A. Lodder, and J. van Ek, Phys. Rev. B 56, 12167–12177 (1997).Google Scholar
  35. 35.
    J.P. Dekker and A. Lodder, J. Appl. Phys. 84, 1958–1962 (1998).Google Scholar
  36. 36.
    J.P. Dekker, P. Gumbsch, E. Arzt, and A. Lodder, Phys. Rev. B 59, 7451–7457 (1999).Google Scholar
  37. 37.
    A. Lodder, Defect Diffus. Forum 261–262, 77–84 (2007).Google Scholar
  38. 38.
    R.S. Sorbello, J. Phys. Chem. Solids 34, 937–950 (1973).Google Scholar
  39. 39.
    A. Lodder, J. Phys. F Met. Phys. 6, 1885 (1976).Google Scholar
  40. 40.
    Y.-C. Liu, B. Afflerbach, R. Jacobs, S.-K. Lin, and D. Morgan, MRS Commun. 1, 1–9 (2019).Google Scholar
  41. 41.
    I.A. Blech, J. Appl. Phys. 47, 1203–1208 (1976).Google Scholar
  42. 42.
    I.A. Blech and C. Herring, Appl. Phys. Lett. 29, 131–133 (1976).Google Scholar
  43. 43.
    H.U. Schreiber, Thin Solid Films 175, 29–36 (1989).Google Scholar
  44. 44.
    C.C. Wei and C.Y. Liu, J. Mater. Res. 20, 2072–2079 (2005).Google Scholar
  45. 45.
    Y. Li and D. Goyal, 3D Microelectronic Packaging: From Fundamentals to Applications, 1st ed. (New York: Springer, 2017), pp. 71–99.Google Scholar
  46. 46.
    R. Frankovic and G.H. Bernstein, IEEE Trans. Electron Dev. 43, 2233–2239 (1996).Google Scholar
  47. 47.
    D. Ney, X. Federspiel, V. Girault, O. Thomas, and P. Gergaud, IEEE Trans. Device Mater. Reliab. 6, 175–180 (2006).Google Scholar
  48. 48.
    L. Arnaud, T. Berger, and G. Reimbold, J. Appl. Phys. 93, 192–204 (2003).Google Scholar
  49. 49.
    Y. Chai, P.C. Chan, Y. Fu, Y. Chuang, and C. Liu, IEEE Electron Device Lett. 29, 1001–1003 (2008).Google Scholar
  50. 50.
    E.T. Ogawa, A.J. Bierwag, K.-D. Lee, H. Matsuhashi, P.R. Justison, A.N. Ramamurthi, P.S. Ho, V.A. Blaschke, D. Griffiths, A. Nelsen, M. Breen, and R.H. Havemann, Appl. Phys. Lett. 78, 2652–2654 (2001).Google Scholar
  51. 51.
    P.-C. Wang and R.G. Filippi, Appl. Phys. Lett. 78, 3598–3600 (2001).Google Scholar
  52. 52.
    R. Frankovic, G.H. Bernstein, and J.J. Clement, IEEE Electron Dev. Lett. 17, 244–246 (1996).Google Scholar
  53. 53.
    R.G. Filippi, G.A. Biery, and M.H. Wood, MRS Symp. Proc. 309, 141 (1993).Google Scholar
  54. 54.
    E. Glickman, N. Osipov, A. Ivanov, and M. Nathan, J. Appl. Phys. 83, 100–107 (1998).Google Scholar
  55. 55.
    L. Klinger, E. Glickman, A. Katsman, and L. Levin, Mater. Sci. Eng. B 23, 15–18 (1994).Google Scholar
  56. 56.
    E. Glickman and M. Nathan, Microelectron. Eng. 50, 329–334 (2000).Google Scholar
  57. 57.
    R. Kirchheim, Acta Metall. Mater. 40, 309–323 (1992).MathSciNetGoogle Scholar
  58. 58.
    M.A. Korhonen, P. Borgesen, K.N. Tu, and C.Y. Li, J. Appl. Phys. 73, 3790–3799 (1993).Google Scholar
  59. 59.
    J.J. Clement and C.V. Thompson, J. Appl. Phys. 78, 900–904 (1995).Google Scholar
  60. 60.
    Y.J. Park and C.V. Thompson, J. Appl. Phys. 82, 4277–4281 (1997).Google Scholar
  61. 61.
    J.R. Lloyd, Microelectron. Eng. 49, 51–64 (1999).Google Scholar
  62. 62.
    M. Sarychev, Y.V. Zhitnikov, L. Borucki, C.-L. Liu, and T. Makhviladze, J. Appl. Phys. 86, 3068–3075 (1999).Google Scholar
  63. 63.
    K.N. Tu, J. Appl. Phys. 94, 5451–5473 (2003).Google Scholar
  64. 64.
    B.C. Valek, J.C. Bravman, N. Tamura, A.A. MacDowell, R.S. Celestre, H.A. Padmore, R. Spolenak, W.L. Brown, B.W. Batterman, and J.R. Patel, Appl. Phys. Lett. 81, 4168–4170 (2002).Google Scholar
  65. 65.
    N. Tamura, R.S. Celestre, A.A. MacDowell, H.A. Padmore, R. Spolenak, B.C. Valek, N.M. Chang, A. Manceau, and J.R. Patel, Rev. Sci. Instrum. 73, 1369–1372 (2002).Google Scholar
  66. 66.
    K. Chen, N. Tamura, B.C. Valek, and K.N. Tu, J. Appl. Phys. 104, 013513 (2008).Google Scholar
  67. 67.
    A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Appl. Phys. Lett. 85, 2490–2492 (2004).Google Scholar
  68. 68.
    H. Shibata, M. Murota, and K. Hashimoto, Jpn. J. Appl. Phys. 32, 4479–4484 (1993).Google Scholar
  69. 69.
    S. Vaidya and A.K. Sinha, Thin Solid Films 75, 253–259 (1981).Google Scholar
  70. 70.
    M.J. Attardo and R. Rosenberg, IEEE 8th International Reliability Physics Symposium, vol. 41, no. 6, p. 2381–2386 (1970).Google Scholar
  71. 71.
    C. Kim and J.W. Morris Jr, J. Appl. Phys. 72, 1837–1845 (1992).Google Scholar
  72. 72.
    E.G. Colgan and K.P. Rodbell, J. Appl. Phys. 75, 3423–3434 (1994).Google Scholar
  73. 73.
    A.J. Learn, J. Appl. Phys. 44, 1251–1258 (1973).Google Scholar
  74. 74.
    X.Y. Liu, C.L. Liu, and L.J. Borucki, Acta Mater. 47, 3227–3231 (1999).Google Scholar
  75. 75.
    K.N. Tu, Phys. Rev. B 45, 1409 (1992).Google Scholar
  76. 76.
    H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H.N. Han, J. Cao, S.-H. Ahn, and D.-M. Chun, Int. J. Precis. Eng. Manuf. Green Technol. 2, 365–376 (2015).Google Scholar
  77. 77.
    A.F. Sprecher, S.L. Mannan, and H. Conrad, Acta Metall. 34, 1145–1162 (1986).Google Scholar
  78. 78.
    H. Conrad, A. Sprecher, W. Cao, and X. Lu, JOM 42, 28–33 (1990).Google Scholar
  79. 79.
    B.J. Ruszkiewicz, T. Grimm, I. Ragai, L. Mears, and J.T. Roth, J. Manuf. Sci. Eng. Technol. ASME 139, 110801 (2017).Google Scholar
  80. 80.
    W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, and J.T. Roth, Electrically Assisted Forming (Cham: Springer, 2015), pp. 255–311.Google Scholar
  81. 81.
    L. Guan, G. Tang, and P.K. Chu, J. Mater. Res. 25, 1215–1224 (2011).Google Scholar
  82. 82.
    O.A. Troitskii, Pis’ma Zhurn. Experim. Theor. Fiz. 10, 18–22 (1969).Google Scholar
  83. 83.
    V.I. Spitsyn, O.A. Troitskii, E.V. Gusov, and V.K. Kurdynkov, Izvest. Akad. Nauk. SSSR Metall. 2, 411 (1974).Google Scholar
  84. 84.
    K. Okazaki, M. Kagawa, and H. Conrad, Scr. Metall. 12, 1063–1068 (1978).Google Scholar
  85. 85.
    H. Conrad, N. Karam, and S. Mannan, Scr. Metall. 17, 411–416 (1983).Google Scholar
  86. 86.
    V.L.A. Silveira, R.A.F.O. Fortes, and W.A. Mannheimer, Scr. Metall. 17, 1381–1382 (1983).Google Scholar
  87. 87.
    J.P. Barnak, A.F. Sprecher, and H. Conrad, Scr. Metall. 32, 879–884 (1995).Google Scholar
  88. 88.
    Y. Cao, L. He, Y. Zhou, P. Wang, and J. Cui, Mater. Sci. Eng. A 674, 193–202 (2016).Google Scholar
  89. 89.
    H. Conrad, Mater. Sci. Eng. A 287, 276–287 (2000).Google Scholar
  90. 90.
    M.-J. Kim, M.-G. Lee, K. Hariharan, S.-T. Hong, I.-S. Choi, D. Kim, K.H. Oh, and H.N. Han, Int. J. Plast. 94, 148–170 (2017).Google Scholar
  91. 91.
    J.-Y. He, K.-L. Lin, and A.T. Wu, J. Alloys Compd. 619, 372–377 (2015).Google Scholar
  92. 92.
    W.-Y. Chen, T.-C. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and H.-Y. Lee, Scripta Mater. 68, 317–320 (2013).Google Scholar
  93. 93.
    J. Kuang, T.S.E. Low, S.R. Niezgoda, X. Li, Y. Geng, A.A. Luo, and G. Tang, Int. J. Plast. 87, 86–99 (2016).Google Scholar
  94. 94.
    H. Lv, R. Zhou, L. Li, H. Ni, J. Zhu, and T. Feng, Materials 11, 2220 (2018).Google Scholar
  95. 95.
    V. Stolyarov, Acta Metall. Sin. Engl. 31, 1305–1310 (2018).Google Scholar
  96. 96.
    Y. Jiang, G. Tang, C. Shek, Y. Zhu, L. Guan, S. Wang, and Z. Xu, J. Mater. Res. 24, 1810–1814 (2009).Google Scholar
  97. 97.
    Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Appl. Phys. A 97, 607–615 (2009).Google Scholar
  98. 98.
    Y. Zhu, S. To, W.B. Lee, X. Liu, Y. Jiang, and G. Tang, J. Mater. Res. 24, 2661–2669 (2009).Google Scholar
  99. 99.
    W. Zhang, M. Sui, Y. Zhou, and D. Li, Micron 34, 189–198 (2003).Google Scholar
  100. 100.
    W. Zhang, M.L. Sui, K.Y. Hu, D.X. Li, X.N. Guo, G.H. He, and B.L. Zhou, J. Mater. Res. 15, 2065–2068 (2011).Google Scholar
  101. 101.
    S. To, Y. Zhu, W. Lee, X. Liu, Y. Jiang, and G. Tang, Appl. Phys. A 96, 939–944 (2009).Google Scholar
  102. 102.
    G. Tang, J. Zhang, Y. Yan, H. Zhou, and W. Fang, J. Mater. Process. Technol. 137, 96–99 (2003).Google Scholar
  103. 103.
    Y. Dolinsky and T. Elperin, Phys. Rev. B 47, 14778–14785 (1993).Google Scholar
  104. 104.
    Y. Dolinsky and T. Elperin, Phys. Rev. B 50, 52 (1994).Google Scholar
  105. 105.
    S.K. Lin, C.K. Yeh, W. Xie, Y.C. Liu, and M. Yoshimura, Sci. Rep. 3, 4553 (2013).Google Scholar
  106. 106.
    K.N. Tu, Phys. Rev. B 49, 2030–2034 (1994).Google Scholar
  107. 107.
    S.-W. Chen and S.-K. Lin, J. Mater. Res. 21, 3065–3071 (2011).Google Scholar
  108. 108.
    S.-W. Chen, S.-K. Lin, and J.-M. Jao, Mater. Trans. 45, 661–665 (2004).Google Scholar
  109. 109.
    W.C. Liu, S.W. Chen, and C.M. Chen, J. Electron. Mater. 27, L6–L9 (1998).Google Scholar
  110. 110.
    N. Bertolino, J. Garay, U. Anselmi-Tamburini, and Z.A. Munir, TPHB 82, 969–985 (2002).Google Scholar
  111. 111.
    C.M. Hsu, D.S.H. Wong, and S.W. Chen, J. Appl. Phys. 102, 023715-1–023715-7 (2007).Google Scholar
  112. 112.
    C.K. Yeh and S.K. Lin, (National Cheng Kung University, Tainan, Taiwan, unpublished research, 2013).Google Scholar
  113. 113.
    C.M. Chen and S.W. Chen, J. Electron. Mater. 28, 902–906 (1999).Google Scholar
  114. 114.
    C.-M. Chen, (National Tsing Hua University, Hsinchu, Taiwan, unpublished research, 2002).Google Scholar
  115. 115.
    J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Acta Mater. 51, 4487–4495 (2003).Google Scholar
  116. 116.
    J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Intermetallics 12, 589–597 (2004).Google Scholar
  117. 117.
    A. Kumar, M. He, Z. Chen, and P.S. Teo, Thin Solid Films 462, 413–418 (2004).Google Scholar
  118. 118.
    M. Braunovic, N. Alexandrov, and I.E.E.E. Compon, Packag. Manuf. Technol. Part A 17, 78–85 (1994).Google Scholar
  119. 119.
    M.Y. Du, C.M. Chen, and S.W. Chen, Mater. Chem. Phys. 82, 818–825 (2003).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainan CityTaiwan
  2. 2.Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainan CityTaiwan
  3. 3.Hierarchical Green-Energy Materials (Hi-GEM) Research CenterNational Cheng Kung UniversityTainan CityTaiwan

Personalised recommendations