, Volume 71, Issue 10, pp 3658–3666 | Cite as

Preparation of Pyrolytic Carbon from Waste Tires for Methylene Blue Adsorption

  • Yuzhe Zhang
  • Qian Cheng
  • Dandan Wang
  • Da Xia
  • Xudong Zheng
  • Zhongyu LiEmail author
  • Jiann-Yang HwangEmail author
Urban Mining: Characterization and Recycling of Solid Wastes


The problem of treating methylene blue dye (MB) was considered using recycled waste tires. Treating waste by the application of other wastes is a resource-saving pollution treatment strategy. Previous MB treatment methods are either expensive or have high energy demands. In this study, two pollution treatments were connected via carbon pyrolysis. Waste tire pyrolysis by high-temperature microwaves produced pyrolytic carbon, which was then used to adsorb MB. This is because of its unique pore structure and large specific surface area. The results showed that recycled pyrolytic carbon benefits the MB adsorption reaction as a spontaneous endothermic reaction. Empirically, the maximum adsorption capacity of pyrolytic carbon for MB was found to be 71.6 mg g−1 at pH 7 and 298 K. These recycling processes have low cost and low energy requirements, compared to previous studies.



This work is supported by National Natural Science Foundation of China (Nos. 21808018 and, 21876015), Natural Science Research Project of Jiangsu Province (No. 18KJB610002), and Basic Research on the Application of Changzhou (No. CJ20180055). The authors are grateful to all the participants of this study.

Supplementary material

11837_2019_3658_MOESM1_ESM.pdf (855 kb)
Supplementary material 1 (PDF 855 kb)


  1. 1.
    M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang, R. Wang, L. Qin, W. Xue, and B. Song, J. Colloid Interface Sci. 515, 232 (2018).Google Scholar
  2. 2.
    L.Y. Yang, J. Chen, P. Yuan, H. Bai, and L.I. Hong, J. Iron Steel Res. Int. 8, 11 (2017).Google Scholar
  3. 3.
    Z. Derakhshan, M.T. Ghaneian, A.H. Mahvi, C.G. Oliveri, M. Faramarzian, M. Dehghani, and M. Ferrante, Environ. Res. 158, 462 (2017).Google Scholar
  4. 4.
    C. Ding, L. Mao, W. Jie, and J. Shen, Ind. Water Treat. 35, 68 (2015).Google Scholar
  5. 5.
    A.R. Disanto and J.G. Wagner, J. Pharm. Sci. 61, 1090 (2010).Google Scholar
  6. 6.
    F. Yang and J. Chinese, Pharm. Anal. 28, 1395 (2008).Google Scholar
  7. 7.
    K.T. Rim and S.J. Kim, Saf. Health Work 6, 184 (2015).Google Scholar
  8. 8.
    S. Luo and F. Yu, Energy Convers. Manag. 136, 27 (2017).Google Scholar
  9. 9.
    A.B. Hassentrabelsi, T. Kraiem, S. Naoui, and H. Belayouni, Waste Manag. 34, 210 (2014).Google Scholar
  10. 10.
    A. Ayanoğlu and R. Yumrutaş, Energy Convers. Manag. 111, 261 (2016).Google Scholar
  11. 11.
    K. Aoudia, S. Azem, H.N. Aït, M. Gratton, V. Pettarin, and S. Seghar, Waste Manag. 60, 471 (2017).Google Scholar
  12. 12.
    Z.H. Li, K. Yuan, Y.Z. Yu, F.P. Liu, and X.C. Li, Adv. Mater. Res. 105, 529 (2014).Google Scholar
  13. 13.
    R. Wang, R. Yang, B. Wang, and W. Gao, Water Air Soil Pollut. 227, 2 (2016).Google Scholar
  14. 14.
    X.D. Zheng, Y.Y. Wang, F.X. Qiu, Z.Y. Li, and Y.S. Yan, J. Chem. Eng. Data 64, 926 (2019).Google Scholar
  15. 15.
    S. Saaidia, R. Delimi, Z. Benredjem, A. Mehellou, A. Djemel, and K. Barbari, Sep. Sci. 52, 13 (2017).Google Scholar
  16. 16.
    D. Kobayashi, C. Honma, H. Matsumoto, T. Takahashi, C. Kuroda, K. Otake, and A. Shono, Ultrason. Sonochem. 21, 1489 (2014).Google Scholar
  17. 17.
    X. Wei, M.M. Yu, C. Li, X.H. Gong, F. Qin, and Z.H. Wang, Microchim. Acta 185, 208 (2018).Google Scholar
  18. 18.
    O. Baytar, Ö. Şahin, and C. Saka, Appl. Therm. Eng. 138, 542 (2018).Google Scholar
  19. 19.
    W. Kai, L. Ma, Q. Xiong, L. Shan, and L. Tong, IEEE Access 99, 1 (2018).Google Scholar
  20. 20.
    X. Wei, G.D. Xu, C.C. Gong, F. Qin, X.H. Gong, and C. Li, Sens. Actuators B 255, 2697 (2018).Google Scholar
  21. 21.
    F.D.B.D. Sousa, C.H. Scuracchio, G.H. Hu, and S. Hoppe, Polym. Degrad. Stab. 138, 169 (2017).Google Scholar
  22. 22.
    X. Zhang, H. Li, Q. Cao, L. Jin, and F. Wang, Waste Manag. Res. 36, 436 (2018).Google Scholar
  23. 23.
    X. Wei, Z.D. Zhang, and Z.H. Wang, Microchem. J. 145, 55 (2019).Google Scholar
  24. 24.
    T.K.N. Tran, G. Colomines, E. Leroy, A. Nourry, J.F. Pilard, and R. Deterre, J. Appl. Polym. Sci. 133, 24 (2016).Google Scholar
  25. 25.
    V. Makrigianni, A. Giannakas, Y. Deligiannakis, and I. Konstantinou, J. Environ. Chem. Eng. 3, 574 (2015).Google Scholar
  26. 26.
    J. Shah, M.R. Jan, F. Mabood, and M. Shahid, J. Chin. Chem. Soc. Taipei 53, 1085 (2013).Google Scholar
  27. 27.
    A.A. Berlin, T.V. Dudareva, I.A. Krasotkina, and V.G. Nikol’Skii, Polym. Sci. Ser. D 11, 323 (2018).Google Scholar
  28. 28.
    A. Demirbas, B.O. Al-Sasi, and A.S. Nizami, Energy Source 38, 2487 (2016).Google Scholar
  29. 29.
    A. Syafiuddin, S. Salmiati, J. Jonbi, and M.A. Fulazzaky, J. Environ. Manag. 218, 59 (2018).Google Scholar
  30. 30.
    E.D. Du, J.Q. Li, S.Q. Zhou, L. Zheng, and X.X. Fan, Chemosphere 211, 1007 (2018).Google Scholar
  31. 31.
    Y.M. Magdy, H. Altaher, and E. Elqada, Appl. Water Sci. 8, 26 (2018).Google Scholar
  32. 32.
    B. Ren, Y. Xu, L. Zhang, and Z. Liu, J. Taiwan Inst. Chem. E 88, 114 (2018).Google Scholar
  33. 33.
    X.D. Zheng, Y. Zhang, T.T. Bian, Y.Z. Zhang, F.S. Zhang, and Y.S. Yan, Cellulose 26, 1 (2018).Google Scholar
  34. 34.
    X.D. Zheng, Y. Zhang, F.S. Zhang, Z.Y. Li, and Y.S. Yan, J. Hazard. Mater. 353, 496 (2018).Google Scholar
  35. 35.
    J. Shu, R. Liu, H. Wu, Z. Liu, X. Sun, and C. Tao, J. Taiwan Inst. Chem. E 82, 351 (2018).Google Scholar
  36. 36.
    Y. Geng, J. Zhang, J. Zhou, and J. Lei, RSC Adv. 8, 32799 (2018).Google Scholar
  37. 37.
    Z.J. Li, Y.K. Sun, J. Xing, and A. Meng, J. Nanosci. Nanotechnol. 19, 2116 (2019).Google Scholar
  38. 38.
    Y. Jin, C. Zeng, Q.F. Lü, and Y. Yu, Int. J. Biol. Macromol. 123, 50 (2018).Google Scholar
  39. 39.
    B.V.V. Rao and R.M. Rao, Chem. Eng. J. 116, 77 (2006).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Environmental and Safety EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  3. 3.Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouPeople’s Republic of China
  4. 4.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations