, Volume 71, Issue 9, pp 3253–3265 | Cite as

Constitutive Topics in Physical Chemistry of High-Temperature Nonferrous Metallurgy—A Review: Part 1. Sulfide Roasting and Smelting

  • M. Shamsuddin
  • H. Y. SohnEmail author
Technical Article


The prime objective of this review series is to demonstrate the significant role of physicochemical principles in the development and improvement of extraction technologies for different types of metals categorized as common, reactive, rare and refractory. In this part we highlight the roles of phase rule, free energy and activity in roasting and smelting of sulfides. Continuing development of new technologies and reduction in the number of steps in the production of copper, lead, zinc and nickel have been possible because of the thorough understanding and application of the physical chemistry of reactions involved in different extraction steps. The theoretical bases behind the development of several new technologies and the difficulties in realizing certain worthwhile concepts in industrial practices are explained.



  1. 1.
    M. Shamsuddin, Physical Chemistry of Metallurgical ProcessesThe Minerals, Metals and Materials Society, (Hoboken: Wiley, 2016) (Chapters 2 and 3).CrossRefGoogle Scholar
  2. 2.
    H. Ahmadzai, S. Blairs, B. Harris, and L.I. Staffanson, Metall. Trans. B 14 B, 589 (1983).CrossRefGoogle Scholar
  3. 3.
    T. Rosenqvist, Principles of Extractive Metallurgy (New York: McGraw-Hill Book Co., 1974) (Chapter 8).Google Scholar
  4. 4.
    A. Yazawa, Metall. Trans. B 10 B, 307 (1979).CrossRefGoogle Scholar
  5. 5.
    M. Nagamori and F. Habashi, Metall. Trans. B 5 B, 523 (1974).CrossRefGoogle Scholar
  6. 6.
    T.R. Ingraham and H.H. Kellogg, Trans. Met. Soc. AIME 227, 1419 (1963).Google Scholar
  7. 7.
    H.H. Kellogg and S.K. Basu, Trans. Met. Soc. AIME 218, 70 (1960).Google Scholar
  8. 8.
    H.Y. Sohn and R.P. Goel, Mineral Sci. Engg. 11, 137 (1979).Google Scholar
  9. 9.
    A.K. Biswas and D.W. Davenport, Extractive Metallurgy of Copper (New York: Elsevier Science Press, 1976) (Chapter 3).Google Scholar
  10. 10.
    J.D. Gilchrist, Extraction Metallurgy, 2nd ed. (Oxford: Pergamon Press, 1980) (Chapter 12).Google Scholar
  11. 11.
    E.T. Turkdogan, Physical Chemistry of High Temperature Reactions (New York: Academic Press, 1980) (Chapter 8).Google Scholar
  12. 12.
    M. Shamsuddin, N.V. Ngoc, and P.M. Prasad, Met. Mater. Process. 1, 275 (1990).Google Scholar
  13. 13.
    K. Natesan and W.O. Philbrook, Trans. Met. Soc. AIME 245, 2243 (1969).Google Scholar
  14. 14.
    K. Natesan and W.O. Philbrook, Metall. Trans. 1, 1353 (1970).CrossRefGoogle Scholar
  15. 15.
    I.D. Shah and S.E. Khalafallah, Metall. Trans. 2, 605 (1971).CrossRefGoogle Scholar
  16. 16.
    I.D. Shah and S.E. Khalafallah, Metall. Trans. 2, 2637 (1971).CrossRefGoogle Scholar
  17. 17.
    L. Coudurier, I. Wilkomirski, and G. Morizot, Trans. Instn. Min. Met. 79, C34 (1970).Google Scholar
  18. 18.
    P.R. Amman and T.A. Loose, Metall. Trans. 2, 889 (1971).CrossRefGoogle Scholar
  19. 19.
    S.E. Khalafallah, Roasting as a unit process.Rate Processes in Extractive Metallurgy, eds. H.Y. Sohn and M.E. Wadsworth (New York: Plenum Press, 1979), (Chapter 4, Section 4.1).Google Scholar
  20. 20.
    H.Y. Sohn, S. Kang, and J. Chang, Miner. Metall. Process. 22, 65 (2005).Google Scholar
  21. 21.
    H.Y. Sohn, Principles of Copper Production, Treatise on Process Metallurgy, Volume 3 Industrial Processes Part A, (Elsevier, Oxford, 2014) (Section 2.1.1).Google Scholar
  22. 22.
    H. Carr, M.J. Humphris and A. Longo, The smelting of bulk Cu-Ni concentrates at the inco copper cliff smelter. in Proceedings of the Nickel-Cobalt 97 International Symposium, Vol. III Pyrometallurgical Operations, Environment, Vessel Integrity in High-Intensity Smelting and Converting Processes, eds. C. Diaz, I. Holubec and C.G. Tan (Metallurgical Society, CIM, Montreal, 1997), p. 5.Google Scholar
  23. 23.
    I.V. Kojo, A. Jokilaakso, and P. Hanniala, JOM 52, 57 (2000).CrossRefGoogle Scholar
  24. 24.
    W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper, 4th ed. (Oxford: Elsevier Science Ltd., 2002) (Chapters 5-10).Google Scholar
  25. 25.
    P.J. Mackey and R. Campos, Can. Metall. Q. 40, 355 (2001).CrossRefGoogle Scholar
  26. 26.
    W.E. Torres, Current Teniente converter practice at the SPL Ilo smelter. in Sulfide Smelting’98, Current and Future Practices, eds. J.A. Asteljoki and R.L. Stephens, (TMS, Warrendale, 1998) p. 147.Google Scholar
  27. 27.
    J.M. Floyd, Metall. Mat. Trans. B 36B, 557 (2005).CrossRefGoogle Scholar
  28. 28.
    E.N. Mounsey and K.R. Robilliard, JOM 46, 58 (1994).CrossRefGoogle Scholar
  29. 29.
    S. Hughes, M.A. Reuter, R. Baxter and A. Kaye, The Southern African Institute of Mining and Metallurgy (2008) p. 147.Google Scholar
  30. 30.
    R. McClelland, J. Hoang, B. Lightfoot and D. Dhanavel, Commissioning of the Ausmelt lead smelter at Hindustan Zinc. in International Symposium on Sulfide Smelting, Vol. 8 (Sohn International Symposium), eds. F. Kongoli and R. G. Reddy (TMS, Warrendale, 2006), p 163.Google Scholar
  31. 31.
    I.V. Kojo and H. Storch, Copper production with Outokumpu flash smelting an update. in International Symposium on Sulfide Smelting, Vol. 8 (Sohn International Symposium) eds. F. Kongoli and R.G. Reddy, (TMS, Warrendale, 2006), p. 225.Google Scholar
  32. 32.
    Y. Prevost, R. Lepointe, C.A. Levac and D. Beaudoin, First year of operation of the Noranda continuous converter. in Copper 99-Cobre 99 In Proceedings of the Fourth International Conference, Vol. V, Smelting Operations and Advances, eds. D.B. George, W.J. Chen, P.J. Mackey and A.J. Weddick, (TMS, Warrendale, 1999), p. 269.Google Scholar
  33. 33.
    M. Goto, I. Oshima, and M. Hayashi, JOM 50, 60 (1998).CrossRefGoogle Scholar
  34. 34.
    H.K. Worner, Continuous smelting and refining by the WORCRA process. in Proceedings of Symposium on Advances in Extractive Metallurgy, (Institute of Mining and Metallurgy, London, 1968), p. 245.Google Scholar
  35. 35.
    F. Schnalek, J. Holeczy, and J. Schmiedl, JOM 16, 416 (1964).CrossRefGoogle Scholar
  36. 36.
    E.J. Peuraniemi and M. Lahtinen, Outokumpu blister flash smelting process, in International Symposium on Sulfide Smelting, Vol. 8 (Sohn International Symposium) eds. F. Kongoli and R.G. Reddy, (TMS, Warrendale, 2006), p 303.Google Scholar
  37. 37.
    M. Goto and M. Hayashi, The Mitsubishi continuous process, Mitsubishi Material Corporation, Tokyo, (1998).Google Scholar
  38. 38.
    A. Yazawa, Y. Takeda, and Y. Waseda, Can. Met. Quart. 20, 129 (1981).CrossRefGoogle Scholar
  39. 39.
    N. Sevryukov, B. Kuzmin and Y. Chelishchev, (translated: Kuznetsov B.) General Metallurgy, (Moscow, Peace Publishers, 1960) (Chapter 19 and 20).Google Scholar
  40. 40.
    P.E. Queneau and R. Schuhmann, JOM 26, 14 (1974).CrossRefGoogle Scholar
  41. 41.
    P.E. Queneau, JOM 41, 30 (1989).CrossRefGoogle Scholar
  42. 42.
    P. Fischer and H. Mazek, JOM 34, 60 (1982).CrossRefGoogle Scholar
  43. 43.
    R. Saddington, W. Curlook, and P.E. Queneau, JOM 18, 440 (1966).CrossRefGoogle Scholar
  44. 44.
    P.E. Queneau, C.E. O’Neill, A. Illis, and J.S. Warner, JOM 21, 35 (1969).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations