Advertisement

JOM

, Volume 71, Issue 9, pp 3314–3327 | Cite as

Recent Advances in LPSO-Containing Wrought Magnesium Alloys: Relationships Between Processing, Microstructure, and Mechanical Properties

  • Huan LiuEmail author
  • He Huang
  • Ce Wang
  • Jiapeng Sun
  • Jing Bai
  • Feng Xue
  • Aibin Ma
  • Xiao-Bo Chen
Technical Article

Abstract

Development of strong and ductile lightweight magnesium (Mg) alloys has been the subject of enormous research breakthroughs since 2000. This review describes the most significant progress on the design and processing of high-strength wrought Mg alloys containing long-period stacking order (LPSO) phases. It first focuses on the typical atomic structure, transformation, and morphology of various LPSO phases, then explores the key contributions of thermomechanical processing techniques to the metallurgical structure, morphology, spatial dimension, and distribution of diverse LPSO phases and discusses the LPSO-derived strengthening mechanisms of Mg alloys. Finally, future research opportunities for LPSO-containing wrought Mg alloys are proposed on the basis of the mechanistic relationships between the evolution of LPSO phase particles and strengthening mechanisms.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20160869), Fundamental Research Funds for the Central Universities (2018B16614), and Natural Science Foundation of China (51774109).

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    B.J. Wang, S.D. Wang, D.K. Xu, and E.H. Han, J. Mater. Sci. Technol. 33, 1075 (2017).Google Scholar
  2. 2.
    F. Li, H.W. Jiang, and Y. Liu, JOM 69, 93 (2017).Google Scholar
  3. 3.
    H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, and Q. Liu, Acta Mater. 128, 313 (2017).Google Scholar
  4. 4.
    C.Y. Zhao, X.H. Chen, F.S. Pan, J.F. Wang, S.Y. Gao, T. Tu, C.Q. Liu, J.H. Yao, and A. Atrens, J. Mater. Sci. Technol. 35, 142 (2019).Google Scholar
  5. 5.
    B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, and E.H. Han, Int. J. Fatigue 120, 46 (2019).Google Scholar
  6. 6.
    P. Maier, R. Peters, C.L. Mendis, S. Müller, and N. Hort, JOM 68, 1183 (2016).Google Scholar
  7. 7.
    B. Feng, Y.C. Xin, F.L. Guo, H.H. Yu, Y. Wu, and Q. Liu, Acta Mater. 120, 379 (2016).Google Scholar
  8. 8.
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018).Google Scholar
  9. 9.
    M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, and X.B. Chen, J. Mater. Sci. Technol. 35, 535 (2019).Google Scholar
  10. 10.
    J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, J. Magnesium Alloys 6, 277 (2018).Google Scholar
  11. 11.
    Y.X. Li, C.L. Yang, X.Q. Zeng, P.P. Jin, D. Qiu, and W.J. Ding, Mater. Charact. 141, 286 (2018).Google Scholar
  12. 12.
    D.K. Xu, E.H. Han, and Y.B. Xu, Prog. Nat. Sci.: Mater. 26, 117 (2016).Google Scholar
  13. 13.
    Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki, Scr. Mater. 55, 453 (2006).Google Scholar
  14. 14.
    T. Itoi, T. Inazawa, Y. Kuroda, M. Yamasaki, Y. Kawamura, and M. Hirohashi, Mater. Lett. 64, 2277 (2010).Google Scholar
  15. 15.
    T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi, Scr. Mater. 59, 1155 (2008).Google Scholar
  16. 16.
    Z.P. Luo, S.Q. Zhang, Y.L. Tang, and D.S. Zhao, J. Alloys Compd. 209, 275 (1994).Google Scholar
  17. 17.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Mater. Trans. 42, 1172 (2001).Google Scholar
  18. 18.
    M. Matsuda, S. Li, Y. Kawamura, Y. Ikuhara, and M. Nishida, Mater. Sci. Eng., A 393, 269 (2005).Google Scholar
  19. 19.
    Y.M. Zhu, A.J. Morton, and J.F. Nie, Acta Mater. 60, 6562 (2012).Google Scholar
  20. 20.
    Y.M. Zhu, A.J. Morton, and J.F. Nie, Acta Mater. 58, 2936 (2010).Google Scholar
  21. 21.
    Z.Z. Peng, X.H. Shao, Q.Q. Jin, C.H. Li, and X.L. Ma, Scr. Mater. 116, 57 (2016).Google Scholar
  22. 22.
    C. Liu, Y.M. Zhu, Q. Luo, B. Liu, Q.F. Gu, and Q. Li, J. Mater. Sci. Technol. 34, 2235 (2018).Google Scholar
  23. 23.
    K. Hagihara, T. Okamoto, H. Izuno, M. Yamasaki, M. Matsushita, T. Nakano, and Y. Kawamura, Acta Mater. 109, 90 (2016).Google Scholar
  24. 24.
    Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, K. Hono, and J.F. Nie, Scr. Mater. 60, 980 (2009).Google Scholar
  25. 25.
    Q.Q. Jin, C.F. Fang, and S.B. Mi, J. Alloys Compd. 568, 21 (2013).Google Scholar
  26. 26.
    H. Liu, J. Bai, K. Yan, J.L. Yan, A.B. Ma, and J.H. Jiang, Mater. Des. 93, 9 (2016).Google Scholar
  27. 27.
    J.F. Nie, Y.M. Zhu, and A.J. Morton, Metall. Mater. Trans. A 45, 3338 (2014).Google Scholar
  28. 28.
    H. Liu, F. Xue, J. Bai, A.B. Ma, and J.H. Jiang, J. Mater. Sci. Technol. 32, 1267 (2016).Google Scholar
  29. 29.
    Y. Kawamura and M. Yamasaki, Mater. Trans. 48, 2986 (2007).Google Scholar
  30. 30.
    M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Scr. Mater. 53, 799 (2005).Google Scholar
  31. 31.
    N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, J. Mater. Sci. Technol. 34, 1110 (2018).Google Scholar
  32. 32.
    G. Garces, M.A. Muñoz-Morris, D.G. Morris, J.A. Jimenez, P. Perez, and P. Adeva, Intermetallics 55, 167 (2014).Google Scholar
  33. 33.
    E. Oñorbe, G. Garcés, F. Dobes, P. Pérez, and P. Adeva, Metall. Mater. Trans. A 44, 2869 (2013).Google Scholar
  34. 34.
    E. Oñorbe, F. Dobes, P. Pérez, J.M. Antoranz, and P. Adeva, Mater. Sci. Eng., A 539, 48 (2012).Google Scholar
  35. 35.
    M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abe, and Y. Kawamura, Scr. Mater. 78–79, 13 (2014).Google Scholar
  36. 36.
    T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohashi, Sci. Mater. 51, 107 (2004).Google Scholar
  37. 37.
    M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura, Acta Mater. 55, 6798 (2007).Google Scholar
  38. 38.
    E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Acta Mater. 50, 3845 (2002).Google Scholar
  39. 39.
    H. Liu, F. Xue, J. Bai, J. Zhou, and X.D. Liu, Mater. Sci. Eng., A 585, 387 (2013).Google Scholar
  40. 40.
    J.F. Nie, K. Oh-ishi, X. Gao, and K. Hono, Acta Mater. 56, 6061 (2008).Google Scholar
  41. 41.
    Y.M. Zhu, A.J. Morton, M. Weyland, and J.F. Nie, Acta Mater. 58, 464 (2010).Google Scholar
  42. 42.
    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, and Y. Umakoshi, Intermetallics 18, 1079 (2010).Google Scholar
  43. 43.
    N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, J. Mater. Sci. Technol. 31, 1161 (2015).Google Scholar
  44. 44.
    M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, and Y. Kawamura, Mater. Trans. 51, 1640 (2010).Google Scholar
  45. 45.
    J.F. Wang, P.F. Song, X.E. Zhou, X.F. Huang, and F.S. Pan, Mater. Sci. Eng., A 556, 68 (2012).Google Scholar
  46. 46.
    E. Oñorbe, G. Garcés, P. Pérez, and P. Adeva, J. Mater. Sci. 47, 1085 (2012).Google Scholar
  47. 47.
    L.B. Tong, X.H. Li, and H.J. Zhang, Mater. Sci. Eng., A 563, 177 (2013).Google Scholar
  48. 48.
    G. Garces, P. Perez, S. Cabeza, H.K. Lin, S. Kim, W. Gan, and P. Adeva, Mater. Sci. Eng., A 647, 287 (2015).Google Scholar
  49. 49.
    M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura, Mater. Sci. Eng., A 59, 3646 (2011).Google Scholar
  50. 50.
    S. Zhang, G.Y. Yuan, C. Lu, and W.J. Ding, J. Alloys Compd. 509, 3515 (2011).Google Scholar
  51. 51.
    K. Hagihara, N. Yokotani, and Y. Umakoshi, Intermetallics 18, 267 (2010).Google Scholar
  52. 52.
    K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, and Y. Kawamura, Int. J. Plast 77, 174 (2016).Google Scholar
  53. 53.
    M. Yamasaki, K. Hagihara, S. Inoue, J.P. Hadorn, and Y. Kawamura, Acta Mater. 61, 2065 (2013).Google Scholar
  54. 54.
    K. Hagihara, T. Okamoto, M. Yamasaki, Y. Kawamura, and T. Nakano, Scr. Mater. 117, 32 (2016).Google Scholar
  55. 55.
    K. Hiraga, A. Yasuhara, and K. Saito, Mater. Trans. 53, 1385 (2012).Google Scholar
  56. 56.
    D. Egusa, M. Yamasaki, Y. Kawamura, and E. Abe, Mater. Trans. 54, 698 (2013).Google Scholar
  57. 57.
    X.H. Shao, Z.Z. Peng, Q.Q. Jin, and X.L. Ma, Acta Mater. 118, 177 (2016).Google Scholar
  58. 58.
    Z.Z. Peng, X.H. Shao, Q.Q. Jin, J.F. Liu, and X.L. Ma, Mater. Sci. Eng., A 687, 211 (2017).Google Scholar
  59. 59.
    T. Matsumoto, M. Yamasaki, K. Hagihara, and Y. Kawamura, Acta Mater. 151, 112 (2018).Google Scholar
  60. 60.
    R. Matsumoto, M. Uranagase, and N. Miyazaki, Mater. Trans. 54, 686 (2013).Google Scholar
  61. 61.
    R. Matsumoto and M. Uranagase, Mater. Trans. 56, 957 (2015).Google Scholar
  62. 62.
    Y. Cao, S. Ni, X.Z. Liao, M. Song, and Y.T. Zhu, Mater. Sci. Eng., R 133, 1 (2018).Google Scholar
  63. 63.
    J.S. Zhang, C.J. Chen, W.L. Cheng, L.P. Bian, H.X. Wang, and C.X. Xu, Mater. Sci. Eng., A 559, 416 (2013).Google Scholar
  64. 64.
    H. Liu, H. Huang, X.W. Yang, C. Li, J.L. Yan, J.H. Jiang, and A.B. Ma, J. Magnesium Alloys 5, 231 (2017).Google Scholar
  65. 65.
    H. Liu, J. Ju, X.W. Yang, J.L. Yan, D. Song, J.H. Jiang, and A.B. Ma, J. Alloys Compd. 704, 509 (2017).Google Scholar
  66. 66.
    H. Liu, J. Ju, F.M. Lu, J.L. Yan, J. Bai, J.H. Jiang, and A.B. Ma, Mater. Sci. Eng., A 682, 255 (2017).Google Scholar
  67. 67.
    H. Liu, Z.J. Cheng, K. Yan, J.L. Yan, J. Bai, J.H. Jiang, and A.B. Ma, J. Mater. Sci. Technol. 32, 1274 (2016).Google Scholar
  68. 68.
    G. Garces, M.A. Muñoz-Morris, D.G. Morris, P. Perez, and P. Adeva, Mater. Sci. Eng., A 614, 96 (2014).Google Scholar
  69. 69.
    R. Lapovok, X. Gao, J.F. Nie, Y. Estrin, and S.N. Mathaudhu, Mater. Sci. Eng., A 615, 198 (2014).Google Scholar
  70. 70.
    J. Wu, Q. Shi, H.C. Ma, and Y.L. Chiu, Mater. Sci. Eng., A 669, 417 (2016).Google Scholar
  71. 71.
    J.S. Zhang, C. Xin, K.B. Nie, W.L. Cheng, H.X. Wang, and C.X. Xu, Mater. Sci. Eng., A 611, 108 (2014).Google Scholar
  72. 72.
    F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, Y.C. Yuan, and L.Y. Zhang, J. Alloys Compd. 601, 140 (2014).Google Scholar
  73. 73.
    G. Garcés, M.A. Muñoz-Morris, D.G. Morris, P. Perez, and P. Adeva, Metall. Mater. Trans. A 46, 5644 (2015).Google Scholar
  74. 74.
    S.M. Zhu, R. Lapovok, J.F. Nie, Y. Estrina, and S.N. Mathaudhu, Mater. Sci. Eng., A 692, 35 (2017).Google Scholar
  75. 75.
    Q. Yang, B.L. Xiao, D. Wang, M.Y. Zheng, and Z.Y. Ma, Mater. Sci. Eng., A 626, 275 (2015).Google Scholar
  76. 76.
    Q. Yang, B.L. Xiao, D. Wang, M.Y. Zheng, K. Wu, and Z.Y. Ma, J. Alloys Compd. 581, 585 (2013).Google Scholar
  77. 77.
    Q. Yang, B.L. Xiao, Q. Zhang, M.Y. Zheng, and Z.Y. Ma, Scr. Mater. 69, 801 (2013).Google Scholar
  78. 78.
    W.T. Sun, X.G. Qiao, M.Y. Zheng, N. Hu, N. Gao, and M.J. Starink, Mater. Sci. Eng., A 738, 238 (2018).Google Scholar
  79. 79.
    W.T. Sun, C. Xu, X.G. Qiao, M.Y. Zheng, S. Kamado, N. Gao, and M.J. Starink, Mater. Sci. Eng., A 700, 312 (2017).Google Scholar
  80. 80.
    B. Li, B.G. Teng, and D.G. Luo, Acta Metall. Sin. (Engl. Lett.) 31, 1009 (2018).Google Scholar
  81. 81.
    F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, D. Song, Y.C. Yuan, and J. Chen, Mater. Sci. Eng., A 594, 330 (2014).Google Scholar
  82. 82.
    R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng., R 50, 1 (2005).Google Scholar
  83. 83.
    Z.M. Zhang, Y. Du, G.S. Zhang, Z.M. Yan, J.M. Yu, and M. Meng, Mater. Trans. 59, 669 (2018).Google Scholar
  84. 84.
    G.S. Zhang, Z.M. Zhang, Y. Du, Z.M. Yan, and X. Che, Materials 11, 2092 (2018).Google Scholar
  85. 85.
    Z. Leng, J.H. Zhang, T.L. Zhu, R.Z. Wu, M.L. Zhang, S.J. Liu, J.F. Sun, and L. Zhang, Mater. Des. 52, 713 (2013).Google Scholar
  86. 86.
    R. Zhen, Y.S. Sun, F. Xue, J.J. Sun, and J. Bai, J. Alloys Compd. 550, 273 (2013).Google Scholar
  87. 87.
    W. Rong, Y. Zhang, Y.J. Wu, M. Sun, J. Chen, Y. Wang, J.Y. Han, L.M. Peng, and H.X. Ding, J. Alloys Compd. 692, 805 (2017).Google Scholar
  88. 88.
    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, G.H. Fan, and S. Kamado, Mater. Sci. Eng., A 643, 137 (2015).Google Scholar
  89. 89.
    C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, and S. Kamado, Sci. Rep. 7, 43391 (2017).Google Scholar
  90. 90.
    C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, and H.L. Xie, Metall. Mater. Trans. A 49, 1931 (2018).Google Scholar
  91. 91.
    Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort, and J. Meng, Mater. Sci. Eng., A 622, 121 (2015).Google Scholar
  92. 92.
    K. Wen, K. Liu, Z.H. Wang, S.B. Li, and W.B. Du, J. Magnesium Alloys 3, 23 (2015).Google Scholar
  93. 93.
    H. Liu, F. Xue, J. Bai, and Y.S. Sun, Mater. Sci. Eng., A 585, 261 (2013).Google Scholar
  94. 94.
    H. Liu, F. Xue, J. Bai, A.B. Ma, J.H. Jiang, and X.F. Wan, Rare Met. Mater. Eng. 46, 1097 (2017).Google Scholar
  95. 95.
    Z.Y. Xue, Y.J. Ren, W.B. Luo, R.P. Zheng, and C. Xu, J. Mater. Eng. Perform. 26, 5963 (2017).Google Scholar
  96. 96.
    X.Z. Han, W.C. Xu, and D.B. Shan, J. Alloys Compd. 509, 8625 (2011).Google Scholar
  97. 97.
    L. Zheng, C.M. Liu, Y.C. Wan, P.W. Yang, and X. Shu, J. Alloys Compd. 509, 8832 (2011).Google Scholar
  98. 98.
    J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).Google Scholar
  99. 99.
    H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, and X.H. Chen, Acta Metall. Sin. (Engl. Lett.) 32, 269 (2019).Google Scholar
  100. 100.
    Z.Q. Zhang, X. Liu, W.Y. Hu, J.H. Li, Q.C. Le, L. Bao, Z.J. Zhu, and J.Z. Cui, J. Alloys Compd. 624, 116 (2015).Google Scholar
  101. 101.
    T. Itoi, T. Inazawa, M. Yamasaki, Y. Kawamura, and M. Hirohashi, Mater. Sci. Eng., A 560, 216 (2013).Google Scholar
  102. 102.
    J.J. Gao, Y.A. Chen, and Y. Wang, Mater. Sci. Eng., A 711, 334 (2018).Google Scholar
  103. 103.
    L. Ye, Y. Liu, D.S. Zhao, Y.L. Zhuang, S.B. Gao, X.Q. Liu, J.P. Zhou, J.N. Gui, and J.B. Wang, Mater. Sci. Eng., A 724, 121 (2018).Google Scholar
  104. 104.
    W. Liu, J.S. Zhang, C.X. Xu, X.M. Zong, J.Q. Hao, Y. Li, and Z. Zhang, Mater. Des. 110, 1 (2016).Google Scholar
  105. 105.
    W. Liu, J.S. Zhang, C.X. Xu, X.M. Zong, W. Zhu, and Q.Q. Ma, J. Mater. Sci. 52, 13271 (2017).Google Scholar
  106. 106.
    W. Liu, J.S. Zhang, L.Y. Wei, C.X. Xu, X.M. Zong, and J.Q. Hao, Mater. Sci. Eng., A 681, 97 (2017).Google Scholar
  107. 107.
    H. Liu, H. Huang, C. Wang, J. Ju, J.P. Sun, Y.N. Wu, J.H. Jiang, and A.B. Ma, Metals 8, 658 (2018).Google Scholar
  108. 108.
    Z.J. Yu, C. Xu, J. Meng, X.H. Zhang, and S. Kamado, Mater. Sci. Eng., A 713, 234 (2018).Google Scholar
  109. 109.
    Z.J. Yu, C. Xu, J. Meng, X.H. Zhang, and S. Kamado, J. Alloys Compd. 729, 627 (2017).Google Scholar
  110. 110.
    K. Wang, J.F. Wang, S. Huang, S.Q. Gao, S.F. Guo, S.J. Liu, X.H. Chen, and F.S. Pan, Mater. Sci. Eng., A 733, 267 (2018).Google Scholar
  111. 111.
    W. Liu, Y.B. Ma, Y.G. Zhang, X.X. Fan, C.X. Xu, and J.S. Zhang, Mater. Sci. Eng., A 690, 132 (2017).Google Scholar
  112. 112.
    J.F. Wang, K. Wang, F. Hou, S.J. Liu, X. Peng, J.X. Wang, and F.S. Pan, Mater. Sci. Eng., A 728, 10 (2018).Google Scholar
  113. 113.
    L.B. Tong, Q.X. Zhang, Z.H. Jiang, J. Meng, and H.J. Zhang, Mater. Sci. Eng., A 620, 483 (2015).Google Scholar
  114. 114.
    W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, M. Sun, J. Chen, and L.M. Peng, Mater. Sci. Eng., A 740–741, 262 (2019).Google Scholar
  115. 115.
    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv, J. Alloys Compd. 528, 40 (2012).Google Scholar
  116. 116.
    X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, W.H. Liu, and L.W. Lu, Mater. Charact. 135, 76 (2018).Google Scholar
  117. 117.
    X. Liu, Z.Q. Zhang, W.Y. Hu, Q.C. Le, L. Bao, and J.Z. Cui, J. Mater. Sci. Technol. 32, 313 (2016).Google Scholar
  118. 118.
    J.F. Wang, P.F. Song, S. Huang, and F.S. Pan, Mater. Lett. 93, 415 (2013).Google Scholar
  119. 119.
    C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, and S. Kamado, Sci. Rep. 7, 40846 (2017).Google Scholar
  120. 120.
    G. Garces, D.G. Morris, M.A. Muñoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, and P. Adeva, Acta Mater. 94, 78 (2015).Google Scholar
  121. 121.
    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, and Y. Umakoshi, Acta Mater. 58, 6282 (2010).Google Scholar
  122. 122.
    G. Garcés, K. Máthis, J. Medina, K. Horváth, D. Drozdenko, E. Oñorbe, P. Dobroň, P. Pérez, M. Klaus, and P. Adeva, Int. J. Plast 106, 107 (2018).Google Scholar
  123. 123.
    K. Hagihara, Z.X. Li, M. Yamasaki, Y. Kawamura, and T. Nakano, Acta Mater. 163, 226 (2019).Google Scholar
  124. 124.
    D.X. Zhang, Z. Tan, Q.H. Huo, Z.Y. Xiao, Z.W. Fang, and X.Y. Yang, Mater. Sci. Eng., A 715, 389 (2018).Google Scholar
  125. 125.
    X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, and Z.Y. Chen, J. Alloys Compd. 749, 878 (2018).Google Scholar
  126. 126.
    X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, X.Z. Han, and Z.Y. Chen, Metall. Mater. Trans. A 48, 3060 (2017).Google Scholar
  127. 127.
    X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu, PANS 112, 14501 (2015).Google Scholar
  128. 128.
    X.L. Wu and Y.T. Zhu, Mater. Res. Lett. 5, 527 (2017).Google Scholar
  129. 129.
    T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Science 331, 1587 (2011).Google Scholar
  130. 130.
    H. Yang, T.D. Topping, K. Wehage, L. Jiang, E.J. Lavernia, and J.M. Schoenung, Mater. Sci. Eng., A 616, 35 (2014).Google Scholar
  131. 131.
    K. Yan, J.P. Sun, H. Liu, H.H. Cheng, J. Bai, and X. Huang, Mater. Lett. 242, 87 (2019).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Mechanics and MaterialsHohai UniversityNanjingChina
  2. 2.College of Materials Science and EngineeringSoutheast UniversityNanjingChina
  3. 3.School of EngineeringRMIT UniversityCarltonAustralia

Personalised recommendations