Advertisement

JOM

, Volume 71, Issue 12, pp 4274–4283 | Cite as

Nonlinearity of Material Loss Versus the Wearing Force

  • Abu H. M. A. Rahman
  • D. Y. LiEmail author
  • R. Xu
  • D. L. Chen
  • Qingyang Li
  • Wei Li
Advances in Surface Engineering
  • 51 Downloads

Abstract

In contrast to the description provided by Archard’s equation, material loss under a wearing force is more or less nonlinear. Excluding the wear regime transition and other possible factors such as oxidation, this nonlinear relationship may result from variations in the mechanical behavior of materials such as strain hardening. Although this is a classic topic, relevant issues have still not been fully clarified or quantified. Better understanding of the nonlinearity would help achieve good control of the wear of materials, especially surface wear encountered in nano/microsystems, which are sensitive to surface damage or deterioration. In this study, we investigated the nonlinearity of material loss versus wearing force, without involving the wear regime transition, for three alloys, Al5182 (fcc), AZ31B alloy (hcp), and steel (bcc). An attempt is made to study this phenomenon in depth and extract additional information on the material behavior from the nonlinearity.

Notes

Acknowledgements

The authors are grateful to the Natural Science and Engineering Research Council of Canada, the National Major Science and Technology Specialized High-end Foreign Talents Introduction Project (China), Camber Technology Corporation, Suncor Energy, GIW Industries Inc., Shell Canada Ltd., Magna International Inc., and Volant Products Inc. for financial support.

References

  1. 1.
    K.C. Ludema, Friction, Wear, Lubrication: A Textbook in Tribology (Boca Raton: CRC Press, 1996).CrossRefGoogle Scholar
  2. 2.
    M.F. Ashby and D.R. Jones. Fuel Energy Abstr. 4, 284 (1995).Google Scholar
  3. 3.
    F.A.A. Crane, J.A. Charles, and J. Furness, Selection and Use of Engineering Materials, 3rd ed. (Oxford: Butterworth-Heinemann, 1997).Google Scholar
  4. 4.
    J.M. Challen, P.L.B. Oxley, and B.S. Hockenhull, Wear 111, 275 (1986).CrossRefGoogle Scholar
  5. 5.
    A. Kapoor and K.L. Johnson, Proc. R. Soc. Lond. A 445, 367 (1994).CrossRefGoogle Scholar
  6. 6.
    J.F. Archard, J. Appl. Phys. 24, 981 (1953).CrossRefGoogle Scholar
  7. 7.
    M.J. Murray, P.J. Mutton, and J.D. Watson, J. Lubr. Technol. 104, 9 (1982).CrossRefGoogle Scholar
  8. 8.
    K. Hokkirigawa, K. Kato, and Z.Z. Li, Wear 123, 241 (1988).CrossRefGoogle Scholar
  9. 9.
    J.L. Xuan, I.T. Hong, and E.C. Fitch, J. Tribol. 111, 35 (1989).CrossRefGoogle Scholar
  10. 10.
    H. Krause and W. Tackenberg, Wear 64, 291 (1980).CrossRefGoogle Scholar
  11. 11.
    L. Fang, Q.D. Zhou, and Y.J. Li, Wear 151, 313 (1991).CrossRefGoogle Scholar
  12. 12.
    A. Kluge, K. Langguth, R. Öchsner, K. Kobs, and H. Ryssel, Mater. Sci. Eng. A 115, 261 (1989).CrossRefGoogle Scholar
  13. 13.
    D.Y. Li, Abrasive wear. ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology, ed. G.E. Totten (Materials Park: ASM International, 2017).Google Scholar
  14. 14.
    I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, 2nd ed. (Oxford: Butterworth-Heinemann, 2017).Google Scholar
  15. 15.
    R. Liu and D.Y. Li, Wear 251, 956 (2001).CrossRefGoogle Scholar
  16. 16.
    G. Pintaude, Introduction of the ratio of the hardness to the reduced elastic modulus for abrasion.Tribology—Fundamentals and Advancements, ed. J. Gegner (Singapore: Intech, 2013), Google Scholar
  17. 17.
    A.D. Sarkar, Friction and Wear (New York: Academic Press, 1980).Google Scholar
  18. 18.
    L. Ceschini, C. Martini, and A. Morri, Tribol. Int. 92, 493 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Chen and A.T. Alpas, Wear 246, 106 (2000).CrossRefGoogle Scholar
  20. 20.
    Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, and K. Lua, Mater. Sci. Eng. A 352, 144 (2003).CrossRefGoogle Scholar
  21. 21.
    M. Elmadagli and A.T. Alpas, Wear 261, 367 (2006).CrossRefGoogle Scholar
  22. 22.
    T.J. Rupert and C.A. Schuh, Acta Mater. 58, 4137 (2010).CrossRefGoogle Scholar
  23. 23.
    C. Liang, X. Han, T.F. Su, X.X. Lv, and J. An, Trans. Indian Inst. Metals 68, 89 (2014).CrossRefGoogle Scholar
  24. 24.
    T.T. Vuong, P.A. Meehan, D.T. Eadie, K. Oldknow, D. Elvidge, P.A. Bellette, and W.J. Daniel, Wear 271, 287 (2011).CrossRefGoogle Scholar
  25. 25.
    R. Lewis and U. Olofsson, Wear 257, 721 (2004).CrossRefGoogle Scholar
  26. 26.
    S.C. Lim and M.F. Ashby, Acta Metall. 35, 1 (1987).CrossRefGoogle Scholar
  27. 27.
    S.R. Pearson and P.H. Shipway, Wear 330–331, 93 (2015).CrossRefGoogle Scholar
  28. 28.
  29. 29.
    F.O. Sonmez and A. Demir, J. Mater. Process. Technol. 186, 163 (2007).CrossRefGoogle Scholar
  30. 30.
    G. Srikant, N. Chollacoop, and U. Ramamurty, Acta Mater. 54, 5171 (2006).CrossRefGoogle Scholar
  31. 31.
    S.C. Lim, M.F. Ashby, and J.H. Brunton, Acta Metall. 35, 1343 (1987).CrossRefGoogle Scholar
  32. 32.
    X.D. Niu, D.Q. An, X. Han, W. Sun, T.F. Su, J. An, and R.G. Li, Tribol. Trans. 60, 238 (2017).CrossRefGoogle Scholar
  33. 33.
    M.A. Chowdhury, M.K. Khalil, D.M. Nuruzzaman, and M.L. Rahaman, Int. J. Mech. Mech. Eng. 11, 53 (2011).Google Scholar
  34. 34.
    A.K. Waghmare and P. Sahoo, Eng. Sci. Technol. Int. J. 18, 463 (2015).CrossRefGoogle Scholar
  35. 35.
    S.K.R. Chowdhury and P. Ghosh, Wear 174, 9 (1994).CrossRefGoogle Scholar
  36. 36.
    R. Ernest, Friction and Wear of Materials (New York: Wiley, 1995).Google Scholar
  37. 37.
    N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Scr. Mater. 57, 1004 (2007).CrossRefGoogle Scholar
  38. 38.
    H.C. Thomas, Mechanical Behavior of Materials (Singapore: McGraw-Hill Int., 2000), pp. 324–325.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Abu H. M. A. Rahman
    • 1
  • D. Y. Li
    • 1
    • 4
    Email author
  • R. Xu
    • 1
    • 2
  • D. L. Chen
    • 3
  • Qingyang Li
    • 4
  • Wei Li
    • 4
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.College of Mechanical Engineering and AutomationWuhan University of Science and TechnologyWuhanChina
  3. 3.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada
  4. 4.Institute of Advanced Wear & Corrosion Resistant and Functional MaterialsJinan UniversityGuangzhouChina

Personalised recommendations