Advertisement

JOM

, Volume 71, Issue 9, pp 3113–3118 | Cite as

Co-rich Amorphous Microwires with Improved Giant Magnetoimpedance Characteristics Due to Glass Coating Etching

  • V. A. BautinEmail author
  • N. S. Kholodkov
  • A. V. Popova
  • S. A. Gudoshnikov
  • N. A. Usov
Advances in Processing, Manufacturing, and Applications of Magnetic Materials
  • 56 Downloads

Abstract

Glass-coated Co-rich amorphous microwires are very promising for the development of tiny magnetic sensors that can be used in portable electronic devises. In this study, a substantial decrease in the residual quenching stress in Co-rich microwires is achieved by reducing the thickness of the glass coating by means of precise etching of the wire in a specially designed gel. This effect is confirmed experimentally by means of the small-angle magnetization rotation method as well as by direct measurement of the off-diagonal component of the giant magnetoimpedance (GMI) tensor of wires with different thicknesses of glass coating as a function of the applied magnetic field. A reduction in the thickness of the glass coating to the range of 0.52.0 µm resulted in a nearly twofold increase in the steepness of the off-diagonal GMI component of the studied Co-rich microwires. Therefore, this method can be used to improve the sensitivity of miniature magnetic sensors to weak external magnetic fields.

Notes

Acknowledgement

The authors wish to acknowledge financial support from the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST «MISIS» (Contract No. K2-2017-008).

References

  1. 1.
    A. Zhukov and V. Zhukova, Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure (New York: Nova Science, 2009).Google Scholar
  2. 2.
    M.H. Phan and H.X. Peng, Prog. Mater Sci. 53, 323 (2008).CrossRefGoogle Scholar
  3. 3.
    H.X. Peng, P.F. Qin, and M.-H. Phan, Ferromagnetic Microwire Composites: from Sensors to Microwave Applications (Berlin: Springer, 2016).CrossRefGoogle Scholar
  4. 4.
    K. Mohri and Y. Honkura, Sens. Lett. 5, 267 (2007).CrossRefGoogle Scholar
  5. 5.
    V. Zhukova, M. Ipatov, and A. Zhukov, Sensors 9, 9216 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Gudoshnikov, N. Usov, A. Nozdrin, M. Ipatov, A. Zhukov, and V. Zhukova, Phys. Status Solidi A 211, 980 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Zhukov, V. Zhukova, J.M. Blanco, and J. Gonzalez, J. Magn. Magn. Mater. 294, 165 (2005).CrossRefGoogle Scholar
  8. 8.
    V. Zhukova, A.F. Cobeno, A. Zhukov, J.M. Blanco, S. Puerta, J. Gonzalez, and M. Vazquez, J. Non-Cryst. Solids 287, 31 (2001).CrossRefGoogle Scholar
  9. 9.
    L. Brunetti, P. Tiberto, F. Vinai, and H. Chiriac, Mater. Sci. Eng. A 304–306, 961 (2001).CrossRefGoogle Scholar
  10. 10.
    A. Zhukov, A. Talaat, J.M. Blanco, M. Ipatov, and V. Zhukova, J. Electron. Mater. 43, 4532 (2014).CrossRefGoogle Scholar
  11. 11.
    K.R. Pirota, L. Kraus, H. Chiriac, and M. Knobel, J. Magn. Magn. Mater. 226–230, 730 (2001).CrossRefGoogle Scholar
  12. 12.
    M.H. Phan, Y.S. Kim, N.X. Chien, S.C. Yu, H.B. Lee, and N. Chau, Jpn. J. Appl. Phys. 42, 5571 (2003).CrossRefGoogle Scholar
  13. 13.
    A. Zhukov, A. Talaat, M. Ipatov, J.M. Blanco, and V. Zhukova, J. Alloys Compd. 615, 610 (2014).CrossRefGoogle Scholar
  14. 14.
    V. Zhukova, M. Ipatov, A. Talaat, J.M. Blanco, M. Churyukanova, and A. Zhukov, J. Alloys Compd. 707, 189 (2017).CrossRefGoogle Scholar
  15. 15.
    H. Chiriac, T. Ovari, and Gh. Pop, Phys. Rev. B 52, 10104 (1995).CrossRefGoogle Scholar
  16. 16.
    M. Vazquez and A. Hernando, J. Phys. D Appl. Phys. 29, 939 (1996).CrossRefGoogle Scholar
  17. 17.
    M. Vazquez and A.P. Zhukov, J. Magn. Magn. Mater. 160, 223 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Vázquez, Phys. B 299, 302 (2001).CrossRefGoogle Scholar
  19. 19.
    A.S. Antonov, V.T. Borisov, O.V. Borisov, A.F. Prokoshin, and N.A. Usov, J. Phys. D Appl. Phys. 33, 1161 (2000).CrossRefGoogle Scholar
  20. 20.
    G.R. Aranda, N.A. Usov, V. Zhukova, A. Zhukov, and J. Gonzalez, Phys. Status Solidi A 205, 1800 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Zhukov, A. Talaat, M. Ipatov, and V. Zhukova, IEEE Magn. Lett. 6, 2500104 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Zhukov, M. Ipatov, M. Churyukanova, S. Kaloshkin, and V. Zhukova, J. Alloys Compd. 586, S279 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Zhukov, M. Ipatov, M. Churyukanova, A. Talaat, J.M. Blanco, and V. Zhukova, J. Alloys Compd. 727, 887 (2017).CrossRefGoogle Scholar
  24. 24.
    C.F. Catalan, V.M. Prida, J. Alonso, M. Vázquez, A. Zhukov, B. Hernando, and J. Velázquez, Mater. Sci. Eng. A, Supplement, 438–441 (1997).Google Scholar
  25. 25.
    H. Chiriac, T.A. Ovari, Gh. Pop, and F. Barariu, IEEE Trans. Magn. 33, 782 (1997).CrossRefGoogle Scholar
  26. 26.
    M.J. Garcia Prieto, E. Pina, A. Zhukov, V. Larin, P. Marin, M. Vazquez, and A. Hernando, Sens. Actuators A 81, 227 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Zhukov, J.M. Blanco, J. González, M.J. Garcia Prieto, E. Pina, and M. Vázquez, J. Appl. Phys. 87, 1402 (2000).CrossRefGoogle Scholar
  28. 28.
    S. Corodeanu, T.-A. Ovari, and H. Chiriac, IEEE Trans. Magn. 50, 2007204 (2014).CrossRefGoogle Scholar
  29. 29.
    A. Zhukov, Novel Functional Magnetic Materials (Berlin: Springer, 2016).CrossRefGoogle Scholar
  30. 30.
    V.A. Bautin, E.V. Kostitsyna, A.V. Popova, S.A. Gudoshnikov, A.S. Ignatov, and N.A. Usov, J. Alloys Compd. 731, 18 (2018).CrossRefGoogle Scholar
  31. 31.
    A. Zhukov, V. Zhukova, J.M. Blanco, A.F. Cobeno, M. Vazquez, and J. Gonzalez, J. Magn. Magn. Mater. 258–259, 151 (2003).CrossRefGoogle Scholar
  32. 32.
    S. Gudoshnikov, M. Churyukanova, S. Kaloshkin, A. Zhukov, V. Zhukova, and N.A. Usov, J. Magn. Magn. Mater. 387, 53 (2015).CrossRefGoogle Scholar
  33. 33.
    E. Kostitsyna, S. Gudoshnikov, A. Popova, M. Petrzhik, V.P. Tarasov, N.A. Usov, and A.S. Ignatov, J. Alloys Compd. 707, 199 (2017).CrossRefGoogle Scholar
  34. 34.
    H. Miwa, Glass etching composition and method for frosting using the same, US patent 6807824 B1.Google Scholar
  35. 35.
    R.D. Hardy and J.E. Jarufe, Method and composition for etching glass ceramic and porcelain surfaces, US patent 6337029 B1.Google Scholar
  36. 36.
    N.A. Usov, A.S. Antonov, and A.N. Lagar’kov, J. Magn. Magn. Mater. 185, 159 (1998).CrossRefGoogle Scholar
  37. 37.
    N.A. Usov and S.A. Gudoshnikov, J. Appl. Phys. 113, 243902 (2013).CrossRefGoogle Scholar
  38. 38.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 2 (New York: McGraw-Hill Book, 1953).zbMATHGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.National University of Science and Technology «MISiS»MoscowRussia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of Sciences, (IZMIRAN)Troitsk, MoscowRussia

Personalised recommendations