Advertisement

JOM

, Volume 71, Issue 8, pp 2586–2599 | Cite as

Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum

  • Damien Colas
  • Eric Finot
  • Sylvain Flouriot
  • Samuel ForestEmail author
  • Matthieu Mazière
  • Thomas Paris
Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • 71 Downloads

Abstract

A direct numerical simulation of the cyclic response of a 250-grain polycrystalline aggregate over more than 1000 cycles is presented, being one of the few available simulations including a significant number of cycles. It provides unique results on the evolution of the accumulated plastic strain and ratcheting phenomena inside the grains. Even though the average stress–strain response stabilizes after 500 cycles, unlimited ratcheting is observed at some locations close to grain boundaries and triple junctions. A clear surface effect of the ratcheting behavior is evidenced based on an appropriate combination of Dirichlet, Neumann, and periodic boundary conditions. The magnitude of the ratcheting indicator is found to be significantly higher at the free surface than in the middle section of the aggregate. Both single- and polycrystalline samples of pure tantalum are tested at room temperature for identification of the parameters in the crystal plasticity model. Special attention is dedicated to modeling the static strain aging effects observed in this material.

Notes

References

  1. 1.
    F. Barbe, S. Forest, and G. Cailletaud, Int. J. Plastic. 17, 537 (2001).Google Scholar
  2. 2.
    A. Hor, N. Saintier, C. Robert, T. Palin-Luc, and F. Morel, Int. J. Fatigue 67, 151 (2014).CrossRefGoogle Scholar
  3. 3.
    D.L. McDowell, Mater. Sci. Eng. A 468, 4 (2007).CrossRefGoogle Scholar
  4. 4.
    H. Proudhon, J. Li, F. Wang, A. Roos, V. Chiaruttini, and S. Forest, Int. J. Fatigue 82, 238 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Basseville, G. Cailletaud, T. Ghidossi, Y. Guilhem, E. Lacoste, H. Proudhon, L. Signor, and P. Villechaise, Mater. Sci. Eng. A 696, 122 (2017).CrossRefGoogle Scholar
  6. 6.
    F. Šiška, S. Forest, P. Gumbsch, and D. Weygand, Modell. Simul. Mater. Sci. Eng. 15, S217 (2007).CrossRefGoogle Scholar
  7. 7.
    H. Lim, H.J. Bong, S.R. Chen, T.M. Rodgers, C.C. Battaile, and J.M.D. Lane, JOM 68, 1427 (2016).CrossRefGoogle Scholar
  8. 8.
    H. Lim, R. Dingreville, L.A. Deibler, T.E. Buchheit, and C.C. Battaile, Comput. Mater. Sci. 117, 437 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Colas, E. Finot, S. Forest, S. Flouriot, M. Mazière, and T. Paris, Mater. Sci. Eng. A 615, 283 (2014).CrossRefGoogle Scholar
  10. 10.
    W. Wasserbach, Work-Hardening and Dislocation Behaviour of Tantalum and Tantalum Alloys (Metals and Materials Society, The Minerals, 1996).Google Scholar
  11. 11.
    M.N. Norlain, Comportement mécanique du tantale, texture et recristallisation. PhD thesis, unpublished (1999).Google Scholar
  12. 12.
    C. Kerisit, Analyse de recristallisation statique du tantale déformé à froid pour une modélisation en champ moyen. PhD thesis, Ecole Nationale Supérieure de Mines de Paris (2012).Google Scholar
  13. 13.
    F. Buy, Etude expérimentale et modélisation du comportement plastique du tantale. Prise en compte de la vitesse de déformation et de l’histoire de chargement. PhD thesis, Université de Metz (1996).Google Scholar
  14. 14.
    S. Frénois, Modélisation polycristalline du comportement mécanique du tantale. Application à la mise en forme par hydroformage. PhD thesis, Centrale Paris (2001).Google Scholar
  15. 15.
    Y. Guilhem, S. Basseville, F. Curtit, J.M. Stephan, and G. Cailletaud, Comput. Mater. Sci. 70, 150 (2013).CrossRefGoogle Scholar
  16. 16.
    J. Cheng, A. Shahba, and S. Ghosh, Comput. Mech. 57, 733 (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    F. El Houdaigui, S. Forest, A.-F. Gourgues, and D. Jeulin, On the size of the representative volume element for isotropic elastic polycrystalline copper, in IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, ed. by Q.S. Zheng, Y. Bai, Y.G. Wei (Springer, Beijing, China, 2007), pp. 171–180.Google Scholar
  18. 18.
    F. Barbe, R. Quey, A. Musienko, and G. Cailletaud, Mech. Res. Commun. 36, 762 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Zeghadi, F. Nguyen, S. Forest, A.-F. Gourgues, and O. Bouaziz, Philos. Mag. 87, 1401 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz, Philos. Mag. 87, 1425 (2007).CrossRefGoogle Scholar
  21. 21.
    K.S. Zhang, J.W. Ju, Y.L. Bai, and W. Brocks, Mech. Mater. 85, 16 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Bouchedjra, T. Kanit, C. Boulemia, A. Amrouche, and M. El Amine Belouchrani, Eur. J. Mech. A Solids 72, 1 (2018).CrossRefGoogle Scholar
  23. 23.
    T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003).CrossRefGoogle Scholar
  24. 24.
    C. Gerard, Mesures de champs et identification de modèles de plasticité cristalline. PhD thesis, Université Paris 13 (2008).Google Scholar
  25. 25.
    Y. Guilhem, S. Basseville, F. Curtit, J.M. Stephan, and G. Cailletaud, Int. J. Fatigue 32, 1748 (2010).CrossRefGoogle Scholar
  26. 26.
    J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, and M. Blétry, Non-Linear Mechanics of Materials. Solid Mechanics and Its Applications, vol. 167 (Springer, Berlin, 2009).Google Scholar
  27. 27.
    L. Méric and G. Cailletaud, J. Eng. Mater. Technol. 113, 171 (1991).CrossRefGoogle Scholar
  28. 28.
    V. Eyraud, M.H. Nadal, and C. Gondard, Ultrasonics 38, 438 (2000).CrossRefGoogle Scholar
  29. 29.
    T. Hoc, J. Crépin, L. Gélébart, and A. Zaoui, Acta Mater. 51, 5477 (2003).CrossRefGoogle Scholar
  30. 30.
    H. Lim, J.D. Carroll, C.C. Battaile, T.E. Buchheit, B.L. Boyce, and C.R. Weinberger, Int. J. Plast. 60, 1 (2015).CrossRefGoogle Scholar
  31. 31.
    F. Kroupa, Plastic deformation of BCC metals with special reference to slip geometry (Ecole d’été de Pont-à-Mousson, Nancy, 1967).Google Scholar
  32. 32.
    V. Vitek, Cryst. Lattice Defects 5, 1 (1974).Google Scholar
  33. 33.
    C. Hennessey, G.M. Castelluccio, and D.L. McDowell, Mater. Sci. Eng. A 687, 241 (2017).CrossRefGoogle Scholar
  34. 34.
    P. McCormick, Acta Metall. 36, 3061 (1998).CrossRefGoogle Scholar
  35. 35.
    S. Zhang, P. McCormick, and Y. Estrin, Acta Mater. 49, 1087 (2000).CrossRefGoogle Scholar
  36. 36.
    S. Graff, S. Forest, J.L. Strudel, C. Prioul, P. Pilvin, and J.L. Bechade, Mater. Sci. Eng. A 387–389, 181 (2004).CrossRefGoogle Scholar
  37. 37.
    M. Marchenko, M. Mazière, S. Forest, and J.L. Strudel, Int. J. Plast. 85, 1 (2016).CrossRefGoogle Scholar
  38. 38.
    S. Ren, M. Mazière, S. Forest, T. F. Morgeneyer, and G. Rousselier, C. R. Méc. 345:908, (2017).Google Scholar
  39. 39.
    Z-set package. Non-Linear Material & Structure Analysis Suite. www.zset-software.com (2013).
  40. 40.
    H. Lim, J.D. Carroll, C.C. Battaile, B.L. Boyce, and C.R. Weinberger, Int. J. Mech. Sci. 92, 98 (2015).CrossRefGoogle Scholar
  41. 41.
    A. Marais, M. Mazière, S. Forest, A. Parrot, and P. Le Delliou, Philos. Mag. 92, 3589 (2012).CrossRefGoogle Scholar
  42. 42.
    H.D. Wang, C. Berdin, M. Mazière, S. Forest, C. Prioul, A. Parrot, and P. Le-Delliou, Scr. Mater. 64, 430 (2011).CrossRefGoogle Scholar
  43. 43.
    L. Allais, M. Bornert, T. Bretheau, D. Caldemaison, Acta Metall. Mater. 42, 3865 (1994).CrossRefGoogle Scholar
  44. 44.
    S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
  45. 45.
    A.F. Bower and K.L. Johnson, J. Mech. Phys. Solids 37, 471 (1989).CrossRefGoogle Scholar
  46. 46.
    D.L. McDowell, Int. J. Plast. 11, 397 (1995).CrossRefGoogle Scholar
  47. 47.
    M. Zhang, R.W. Neu, and D.L. McDowell, Int. J. Fatigue 31, 1397 (2009).CrossRefGoogle Scholar
  48. 48.
    M. Abdel-Karim and N. Ohno, Int. J. Plast. 16, 225 (2000).CrossRefGoogle Scholar
  49. 49.
    S. Bari and T. Hassan, Int. J. Plast. 16, 381 (2000).CrossRefGoogle Scholar
  50. 50.
    J.L. Chaboche and J. Lemaitre, Mécanique des matériaux solides. Éd. 3. Dunod (2008).Google Scholar
  51. 51.
    S. Sinha and S. Ghosh, Int. J. Fatigue 28, 1690 (2006).CrossRefGoogle Scholar
  52. 52.
    L. Priester, Grain Boundaries: From Theory to Engineering. Springer Series in Materials Science, vol. 172, 1st ed. (Springer, Berlin, 2013).Google Scholar
  53. 53.
    J. Tong, L.G. Zhao, and B. Lin, Int. J. Fatigue 46, 49 (2013).CrossRefGoogle Scholar
  54. 54.
    D. Colas, Approche multi-échelle du vieillissement et du comportement mécanique cyclique dans le tantale (PhD, Mines ParisTech, 2013).Google Scholar
  55. 55.
    S. Manchiraju, M. Asai, and S. Ghosh, J. Strain Anal. Eng. Des. 42, 183 (2007).CrossRefGoogle Scholar
  56. 56.
    H. Lim, H.J. Bong, S.R. Chen, T.M. Rodgers, C.C. Battaile, and J.M.D. Lane, Mater. Sci. Eng. A 730, 50 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CEA ValducIs-sur-TilleFrance
  2. 2.Centre des matériaux, CNRS UMR 7633MINES ParisTech, PSL Research UniversityEvryFrance
  3. 3.Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRSUniversité de BourgogneDijon CedexFrance

Personalised recommendations