pp 1–10 | Cite as

A Forward Modeling Approach to High-Reliability Grain Mapping by Laboratory Diffraction Contrast Tomography (LabDCT)

  • Sridhar Niverty
  • Jun Sun
  • Jason Williams
  • Florian Bachmann
  • Nicolas Gueninchault
  • Erik Lauridsen
  • Nikhilesh ChawlaEmail author
Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification


Laboratory diffraction contrast tomography (LabDCT) is a laboratory-scale x-ray microtomography technique that can be used to non-destructively map grains and grain boundaries in 3D. The fidelity of grain mapping significantly depends on the quality of grain reflections obtained from the illuminated volume of the specimen. In this article, we report the application of a novel forward modeling approach to improve the reliability of grain mapping. Through this approach, a comparison between the obtained grain reflections and simulated grain reflections can be used to perform a self-fitting operation. This can be used to optimize instrumental parameters and iteratively improve the quality of reconstruction. To demonstrate the effectiveness of the forward modeling approach, LabDCT was used to map the grains in a polycrystalline specimen of the magnesium alloy AZ91E and iteratively improve reconstruction quality significantly.



SN, JJW and NC are grateful for financial support from the Office of Naval Research (ONR) through Contracts N00014-10-1-0350 and N00014-16-1-2174 (Dr. W. Mullins and W Nickerson, Program Managers). We gratefully acknowledge the use of facilities within the Center for 4D Materials Science (4DMS) at Arizona State University.


  1. 1.
    J.P. Hirth, Metall. Trans. 3, 3047 (1972).CrossRefGoogle Scholar
  2. 2.
    R. Smoluchowski, Phys. Rev. 87, 482 (1952).CrossRefGoogle Scholar
  3. 3.
    H. Gleiter, Proceedings of the Second Rise International Symposium on Metallurgy and Materials Science, ed. N. Hansen et al. (Roskilde, 1981), p. 15.Google Scholar
  4. 4.
    C.L. Briant, Mater. Sci. Technol. 17, 1317 (2001).CrossRefGoogle Scholar
  5. 5.
    B.C.P. Forsyth, R. King, and G. Metcalfe, Nat. Publ. Gr. 158, 875 (1946).CrossRefGoogle Scholar
  6. 6.
    V. Randle, Mater. Sci. Technol. 26, 253 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Watanabe and S. Tsurekawa, J. Mater. Sci. 40, 817 (2005).CrossRefGoogle Scholar
  8. 8.
    T. Watanabe, S. Tsurekawa, X. Zhao, and L. Zuo, Microstructure and Texture in Steels and Other Materials (London: Springer, 2009), pp. 43–82.CrossRefGoogle Scholar
  9. 9.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed. (Boca Raton: CRC Press, 1992), pp. 310–319.CrossRefGoogle Scholar
  10. 10.
    R. Keinan, H. Bale, N. Gueninchault, E.M. Lauridsen, and A.J. Shahani, Acta Mater. 148, 225 (2018).CrossRefGoogle Scholar
  11. 11.
    T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, T.F. Ciszek, and E.R. Weber, Appl. Phys. Lett. 89, 044107 (2006).CrossRefGoogle Scholar
  12. 12.
    V.K. Gupta and S.R. Agnew, Int. J. Fatigue 33, 1159 (2011).CrossRefGoogle Scholar
  13. 13.
    L.H. Chan, H. Weiland, S. Cheong, G.S. Rohrer, and A.D. Rollett, Appl. Texture Anal. 201, 261 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Rahimi, D.L. Engelberg, J.A. Duff, and T.J. Marrow, J. Microsc. 233, 423 (2008).CrossRefGoogle Scholar
  15. 15.
    Y. Ma, X. Zhou, W. Huang, G.E. Thompson, X. Zhang, C. Luo, and Z. Sun, Mater. Chem. Phys. 161, 201 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Pawar, T.J.A. Slater, T.L. Burnett, Z. Zhou, G.M. Scamans, Z. Fan, G.E. Thompson, and P.J. Withers, Acta Mater. 133, 90 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Cheung and U. Erb, J. Mater. Sci. Eng. A 185, 39 (1994).CrossRefGoogle Scholar
  18. 18.
    S. Kobayashi, M. Hirata, S. Tsurekawa, and T. Watanabe, Procedia Eng. 10, 112 (2011).CrossRefGoogle Scholar
  19. 19.
    J.C.E. Mertens, N. Chawla, Quantifying Electromigration Processes in Sn-0.7Cu Solder with Lab-Scale X-Ray Computed Micro-Tomography. Thesis Ph.D., Arizona State University, 2015.Google Scholar
  20. 20.
    F.J. Humphreys, J. Mater. Sci. 36, 3833 (2001).CrossRefGoogle Scholar
  21. 21.
    S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011).CrossRefGoogle Scholar
  22. 22.
    F. Han, B. Tang, H. Kou, J. Li, and Y. Feng, Mater. Sci. Eng. A 625, 28 (2015).CrossRefGoogle Scholar
  23. 23.
    E. Merson, R. Brydson, and A. Brown, J. Phys. Conf. Ser. 126, 012020 (2008).CrossRefGoogle Scholar
  24. 24.
    A.J. Wilkinson and T.B. Britton, Mater. Today 15, 366 (2012).CrossRefGoogle Scholar
  25. 25.
    S.I. Wright and M.M. Nowell, Electron Backscatter Diffraction in Materials Science (New York: Springer, 2009), pp. 329–337.CrossRefGoogle Scholar
  26. 26.
    M.D. Uchic, Computational Methods for Microstructure–Property Relationships (New York: Springer, 2011), pp. 31–53.CrossRefGoogle Scholar
  27. 27.
    R.S. Sidhu and N. Chawla, Mater. Charact. 52, 225 (2004).CrossRefGoogle Scholar
  28. 28.
    E.R.J.A. Hunt and P. Prasad, Serial-section Polishing Tomography (Berlin: Springer, 2008).CrossRefGoogle Scholar
  29. 29.
    T.L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M.G. Burke, and P.J. Withers, Ultramicroscopy 161, 119 (2016).CrossRefGoogle Scholar
  30. 30.
    P.G. Kotula, G.S. Rohrer, and M.P. Marsh, MRS Bull. 39, 361 (2014).CrossRefGoogle Scholar
  31. 31.
    Q. Zhang, S. Niverty, A.S.S. Singaravelu, J.J. Williams, E. Guo, T. Jing, and N. Chawla, Mater. Charact. 148, 52 (2019).CrossRefGoogle Scholar
  32. 32.
    J.C.E. Mertens, A. Kirubanandham, and N. Chawla, Acta Mater. 102, 220 (2016).CrossRefGoogle Scholar
  33. 33.
    R. Vallabhaneni, T. Stannard, C.S. Kaira, and N. Chawla, Corros. Sci. 139, 97 (2018).CrossRefGoogle Scholar
  34. 34.
    S.S. Singh, C. Schwartzstein, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, J. Alloys Compd. 602, 163 (2014).CrossRefGoogle Scholar
  35. 35.
    S.S. Singh, J.J. Williams, M.F. Lin, X. Xiao, F. De Carlo, and N. Chawla, Mater. Res. Lett. 2, 217 (2014).CrossRefGoogle Scholar
  36. 36.
    S.S. Singh, J.J. Williams, P. Hruby, X. Xiao, F. De Carlo, and N. Chawla, Integr. Mater. Manuf. Innov. 3, 9 (2014).CrossRefGoogle Scholar
  37. 37.
    S.S. Singh, J.J. Williams, T.J. Stannard, X. Xiao, F. De Carlo, and N. Chawla, Corros. Sci. 104, 330 (2016).CrossRefGoogle Scholar
  38. 38.
    J.J. Williams, K.E. Yazzie, E. Padilla, N. Chawla, X. Xiao, and F. De Carlo, Int. J. Fatigue 57, 79 (2013).CrossRefGoogle Scholar
  39. 39.
    F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, A.J. Davenport, B.J. Connolly, M.H. Larsen, F.D. Carlo, and P. Schmutz, Corros. Sci. 50, 3455 (2008).CrossRefGoogle Scholar
  40. 40.
    T.J. Stannard, J.J. Williams, S.S. Singh, A.S. Sundaram Singaravelu, X. Xiao, and N. Chawla, Corros. Sci. 138, 340 (2018).CrossRefGoogle Scholar
  41. 41.
    A. King, W. Ludwig, M. Herbig, J.Y. Buffiere, A.A. Khan, N. Stevens, and T.J. Marrow, Acta Mater. 59, 6761 (2011).CrossRefGoogle Scholar
  42. 42.
    W. Ludwig, A. King, P. Reischig, M. Herbig, E.M. Lauridsen, S. Schmidt, M. Proudhon, S. Forest, P. Cloetens, S. Rolland du Roscoat, J.Y. Buffiere, T.J. Marrow, and H.F. Poulsen, Mater. Sci. Eng. A 524, 69 (2009).CrossRefGoogle Scholar
  43. 43.
    M. Herbig, A. King, P. Reischig, H. Proudhon, E.M. Lauridsen, J. Marrow, J.Y. Buffiere, and W. Ludwig, Acta Mater. 59, 590 (2011).CrossRefGoogle Scholar
  44. 44.
    V.K. Gupta, R.P. Gangloff, and S.R. Agnew, Int. J. Fatigue 42, 131 (2012).CrossRefGoogle Scholar
  45. 45.
    S.A. McDonald, P. Reischig, C. Holzner, E.M. Lauridsen, P.J. Withers, A.P. Merkle, and M. Feser, Nat. Sci. Rep. 5, 14665 (2015).CrossRefGoogle Scholar
  46. 46.
    C. Holzner, L. Lavery, H. Bale, A. Merkle, S. McDonald, P. Withers, Y. Zhang, D.J. Jensen, M. Kimura, A. Lyckegaard, P. Reischig, and E.M. Lauridsen, Microsc. Today 24, 34 (2016).CrossRefGoogle Scholar
  47. 47.
    H. Kong, H.C. Akakin, and S.E. Sarma, IEEE Trans. Cybern. 43, 1719 (2013).CrossRefGoogle Scholar
  48. 48.
    G.E. Sotak and K.L. Boyer, Comput. Vis. Gr. Image Process. 48, 147 (1989).CrossRefGoogle Scholar
  49. 49.
    H. Spont and J. Cardelino, Image Process. Line 5, 90 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sridhar Niverty
    • 1
  • Jun Sun
    • 2
  • Jason Williams
    • 1
  • Florian Bachmann
    • 2
  • Nicolas Gueninchault
    • 2
  • Erik Lauridsen
    • 2
  • Nikhilesh Chawla
    • 1
    Email author
  1. 1.Center for 4D Materials Science, Materials Science and EngineeringArizona State UniversityTempeUSA
  2. 2.Xnovo Technology ApSKøgeDenmark

Personalised recommendations