Advertisement

JOM

, Volume 71, Issue 12, pp 4264–4273 | Cite as

Preparation by Ball Milling–Thermal Decomposition Method and Characterization of Reduced Graphene Oxide Decorated with Ni Nanoparticles

  • Fupeng Huo
  • Keke ZhangEmail author
  • Meng Zhang
  • Huigai Wang
Advances in Surface Engineering

Abstract

Nickel acetate tetrahydrate [Ni(CH3COO)2·4H2O] was used as a precursor to prepare reduced graphene oxide decorated with Ni nanoparticles (Ni-rGO) by a ball milling–thermal decomposition method. Ni-rGO was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction analysis, Fourier-transform infrared spectroscopy, and Raman spectrometry, and the adsorption energy between Ni atom and rGO was calculated based on first-principles calculations using density functional theory. The results showed that ball milling could be used to effectively restrain the agglomeration and reduce the size of rGO, and improve the adsorption energy between Ni particles and rGO. With increase of the milling time, the nucleation sites of Ni particles increased while the size of the Ni nanoparticles decreased. The thermal decomposition products of Ni(CH3COO)2·4H2O in Ar atmosphere were Ni with a very small amount of carbides. Ni-rGO was obtained by reduction of GO, ball milling, and thermal decomposition processes, and the combination between Ni atom and rGO was via chemisorption.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1604132), the National Science and Technolog International Cooperation of China (2014DFR50820), and the Plan for Scientific Innovation Talent of Henan Province, China (154200510022). Thanks are given to Claudiu B. Bucur for improving the readability of the article.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  3. 3.
    L.L. Zhang, R. Zhou, and X.S. Zhao, J. Mater. Chem. 20, 5983 (2010).CrossRefGoogle Scholar
  4. 4.
    H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, and J.B. Baek, Nano Energy 1, 534 (2012).CrossRefGoogle Scholar
  5. 5.
    Y.X. Liu, X.C. Dong, and P. Chen, Chem. Soc. Rev. 41, 2283 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Li, W. Gao, L. Ci, and C. Wang, Carbon 48, 1124 (2010).CrossRefGoogle Scholar
  8. 8.
    H.M. Sun, Y.X. Ye, J. Liu, Z.F. Tian, Y.Y. Cai, P.F. Li, and C.H. Liang, Chem. Commun. (2017).  https://doi.org/10.1039/C7CC09361F.CrossRefGoogle Scholar
  9. 9.
    L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).CrossRefGoogle Scholar
  10. 10.
    A. Dahal and M. Batzill, Nanoscale 6, 2548 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. Qiao, X.S. Wu, C.X. Ma, H. He, and C. Li, RSC Adv. 4, 21788 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Li and C.Y. Liu, Eur. J. Inorg. Chem. 8, 1244 (2010).CrossRefGoogle Scholar
  13. 13.
    Z. Xu, Z. Liu, H. Sun, and C. Gao, Adv. Mater. 25, 3249 (2013).CrossRefGoogle Scholar
  14. 14.
    H.U. Qing-Hua, X.T. Wang, H. Chen, and Z.F. Wang, N. Carbon Mater. 27, 35 (2012).CrossRefGoogle Scholar
  15. 15.
    W.Z. Gong, C.M. Chen, J.G. Gao, Q.Q. Kong, M.G. Yang, M.Z. Wang, L. Liu, and Y.G. Yang, N. Carbon Mater. 85, 446 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Eriksson, D. Puglisi, Y.H. Kang, R. Yakimova, and A.L. Spetz, Physica B (Amsterdam) 439, 105 (2014).CrossRefGoogle Scholar
  17. 17.
    Y. Lin, K.A. Watson, M.J. Fallbach, S. Ghose, J.G.S. Jr, D.M. Delozier, W. Cao, R.E. Crooks, and J.W. Connell, ACS Nano 3, 871 (2009).CrossRefGoogle Scholar
  18. 18.
    C. Wen, M. Shao, S. Zhuo, Z. Lin, and Z. Kang, Mater. Chem. Phys. 135, 780 (2012).CrossRefGoogle Scholar
  19. 19.
    Q. Wu, M. Jiang, X. Zhang, J. Cai, and S. Lin, J. Mater. Sci. 2, 6656 (2017).CrossRefGoogle Scholar
  20. 20.
    I.Y. Jeon, H.J. Choi, C. Min, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L.P. Zhang, Z.H. Xia, L.M. Dai, N. Park, and J.B. Baek, Sci. Rep. 3, 1810 (2013).CrossRefGoogle Scholar
  21. 21.
    C.T. Mi, G.P. Liu, J.J. Wang, X.L. Guo, S.X. Wu, and J. Yu, Acta Phys. Chim. Sin. 7, 1230 (2014).Google Scholar
  22. 22.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  23. 23.
    L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014).CrossRefGoogle Scholar
  24. 24.
    J. Qi, W. Zhang, R.J. Xiang, K.Q. Liu, H.Y. Wang, M.X. Chen, Y.Z. Han, and R. Cao, Adv. Sci. 2, 1500199 (2015).CrossRefGoogle Scholar
  25. 25.
    J.P. Hu, Y.J. Huang, J.Y. Dong, and Y.X. Wang, Chem. Res. Chin. Univ. 34, 002077 (2013).Google Scholar
  26. 26.
    X.Y. Yang, X.B. Wang, J. Li, L. Wan, and J.C. Wang, Chem. Res. Chin. Univ. 33, 1902 (2012).Google Scholar
  27. 27.
    F. Liu, X.B. Zhang, J.P. Cheng, J.P. Tu, F.Z. Kong, W.Z. Huang, and C.P. Chen, Carbon 41, 2527 (2003).CrossRefGoogle Scholar
  28. 28.
    N. Pierard, A. Fonseca, Z. Konya, I. Willems, G.V. Tendeloo, and J.B. Nagy, Chem. Phys. Lett. 335, 1 (2015).CrossRefGoogle Scholar
  29. 29.
    I.Y. Jeon, S. Zhang, L.P. Zhang, H.J. Choi, J.M. Seo, Z.H. Xia, L.M. Dai, and J.B. Baek, Adv. Mater. 25, 6138 (2013).CrossRefGoogle Scholar
  30. 30.
    I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim, L.M. Dai, and J.B. Baek, J. Am. Chem. Soc. 135, 1386 (2013).CrossRefGoogle Scholar
  31. 31.
    M.A. Mohamed, S.A. Halawy, and M.M. Ebrahim, J. Anal. Appl. Pyrol. 27, 109 (1993).CrossRefGoogle Scholar
  32. 32.
    A.K. Galwey, S.G. Mckee, and T.R.B. Mitchell, React. Solids 6, 173 (1988).CrossRefGoogle Scholar
  33. 33.
    J.C.D. Jesus, I. González, A. Quevedo, and T. Puerta, J. Mol. Catal. A: Chem. 228, 283 (2005).CrossRefGoogle Scholar
  34. 34.
    F.T. Muniz, M.A. Miranda, D.S.C. Morilla, and J.M. Sasaki, Acta Crystallogr. 72, 385 (2016).Google Scholar
  35. 35.
    F.L. Zhang, L.C. Li, and A.M. Tian, Acta Phys. Chim. Sin. 25, 1883 (2009).Google Scholar
  36. 36.
    C. Cao, M. Wu, J. Jiang, and H.P. Cheng, Phys. Rev. B: Condens. Matter 81, 2498 (2010).Google Scholar
  37. 37.
    Z. Ning, X. Du, R. Ran, W. Dong, and C. Chen, J. Supercond. Novel Magn. 26, 3515 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Henan Key Laboratory of Non-ferrous Materials and Processing TechnologyLuoyangChina

Personalised recommendations