Advertisement

JOM

, Volume 71, Issue 9, pp 3151–3158 | Cite as

Characterization of Macroscopic Mechanical Anisotropy of Magnetocaloric Gadolinium Cylinders

  • Darja Steiner PetrovičEmail author
  • Roman Šturm
  • Tomaž Pepelnjak
Advances in Processing, Manufacturing, and Applications of Magnetic Materials
  • 86 Downloads

Abstract

The metallographic analysis of polycrystalline gadolinium cylinders revealed a microstructural anisotropy of some included phases in the extrusion and extrusion transversal directions. The amount of those phases in the material is not significant. However, the macroscopic anisotropy of mechanical properties needs to be verified. The strain distribution during compression loading was analyzed using finite element model (FEM) simulations. A FEM for the simulation of the elasto-plastic response of the Gd cylinders was performed. For this purpose, the experimentally obtained typical flow curve in the extrusion direction was used as the input data for the FEM model. Based on the dimensional similarity of the FEM model and the measured specimens, the potential appearance of macroscopic anisotropy is evaluated. Mechanical testing using compression cigar tests, as well as FEM, did not confirm any obvious effect of the elongated inclusions on the mechanical anisotropy of the gadolinium specimens.

Notes

Acknowledgements

This paper is part of research work within the national Research Programs Nr. P2-0132, Nr. P2-0270, and Nr. P2-0248 financed by the Slovene Ministry of Education, Science and Sport. The authors are very grateful for the financial support. The authors are also grateful to Prof. A. Kitanovski for offered specimens and the constructive discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11837_2019_3521_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1072 kb)

References

  1. 1.
    K.K. Nielsen, J. Tušek, K. Engelbrecht, S. Schopfer, A. Kitanovski, C.R.H. Bahl, A. Smith, N. Pryds, and A. Poredoš, Int. J. Refrig 34, 603 (2011).CrossRefGoogle Scholar
  2. 2.
    K.A. Gschneider Jr., Y. Mudryk, and V.K. Pecharsky, Scr. Mater. 67, 572 (2012).CrossRefGoogle Scholar
  3. 3.
    K.G. Sandeman, Scr. Mater. 67, 566 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Tušek, A. Kitanovski, S. Zupan, I. Prebil, and A. Poredoš, Appl. Therm. Eng. 53, 57 (2013).CrossRefGoogle Scholar
  5. 5.
    A. Kitanovski, J. Tušek, T. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Basel: Springer, 2015), p. 23–37, 97–166.Google Scholar
  6. 6.
    R. Miao, X. Zhang, Q. Zhu, Z. Zhang, Z. Wang, S. Yan, D. Chen, L. Zhou, and Z. Li, J. Rare Earths 32, 1073 (2014).CrossRefGoogle Scholar
  7. 7.
    H.F. Belliveau, Y.Y. Yu, Y. Luo, F.X. Qin, H. Wang, H.X. Shen, J.F. Sun, S.C. Yu, H. Srikanth, and M.H. Phan, J. Alloys Compd. 692, 658 (2017).CrossRefGoogle Scholar
  8. 8.
    S. Taskaev, K. Skokov, V. Khovaylo, V. Buchelnikov, A. Pellenen, D. Karpenkov, M. Ulyanov, D. Bataev, M. Lyange, and O. Gutfleisch, J. Appl. Phys. 117, 123914 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Taskaev, K. Skokov, D. Karpenkov, V. Khovaylo, M. Ulyanov, D. Bataev, A. Pellenen, A. Fazlitdinova, and O. Gutfleisch, J. Magn. Magn. Mater. 442, 360 (2017).CrossRefGoogle Scholar
  10. 10.
    S.V. Taskaev, M.D. Kuz’min, K.P. Skokov, D.Y. Karpenkov, A.P. Pellenen, V.D. Buchelnikov, and O. Gutfleisch, J. Magn. Magn. Mater. 331, 33 (2013).CrossRefGoogle Scholar
  11. 11.
    A.M. Mansanares, F.C.G. Gandra, M.E. Soffner, A.O. Guimaraes, E.C. da Silva, H. Vargas, and E. Marin, J. Appl. Phys. 114, 163905 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Borc, Mater. Chem. Phys. 148, 680 (2014).CrossRefGoogle Scholar
  13. 13.
    D. Steiner Petrovič, R. Šturm, I. Naglič, B. Markoli, and T. Pepelnjak, Materials 9, 382 (2016).CrossRefGoogle Scholar
  14. 14.
    V. Tuninetti, G. Gilles, O. Milis, T. Pardoen, and A.M. Habraken, Int. J. Plast. 67, 53 (2015).CrossRefGoogle Scholar
  15. 15.
    N. Torić, J. Brnić, I. Boko, M. Brčić, I.W. Burgess, and I. Uzelac, Metals 7, 126 (2017).CrossRefGoogle Scholar
  16. 16.
    F. Vollertsen, Prod. Eng. Res. Devel. 2, 377 (2008).CrossRefGoogle Scholar
  17. 17.
    D. Kobold, T. Pepelnjak, G. Gantar, and K. Kuzman, Stroj. vestn. J. Mech. E. 56, 823 (2010).Google Scholar
  18. 18.
    D. Kobold, G. Gantar, and T. Pepelnjak, Mechanika 18, 251 (2012).CrossRefGoogle Scholar
  19. 19.
    C.K. Gupta and N. Krishnamurthy, Extractive Metallurgy of Rare Earths (Boca Raton: CRC Press, 2005), pp. 1–484.Google Scholar
  20. 20.
    G.F. Vander Voort, Metallography: Principles and Practice (New York: McGraw-Hill, 1984), p. 679.Google Scholar
  21. 21.
    Anonymous, Abaqus Theory Manual, Dassault Systems, (Digital Version: Ver. 6.14, 2016).Google Scholar
  22. 22.
    A. Golchin, G.F. Simmons, and S.B. Glavatskih, Tribol. Int. 48, 54 (2012).CrossRefGoogle Scholar
  23. 23.
    T. Pepelnjak, Analyses of friction coefficients of PTFE foils used for forming applications at elevated temperatures, Proceedings of the IN-TECH 2015-International Conference on Innovative Technologies, ed. Z. Car and J. Kudláček (Rijeka, Croatia: University of Rijeka, Faculty of Engineering, 2015), p. 438.Google Scholar
  24. 24.
    X. Hou and B.T. Jones, Inductively coupled plasma/optical emission spectrometry.Encyclopedia of Analytical Chemistry, ed. R.A. Meyers (Chichester: Wiley, 2000), p. 9468.Google Scholar
  25. 25.
    Anonymous, Manual of Weighing Applications-Part 1-Density (Göttingen: Sartorius Weighing Technology, 1999), p. 62.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Darja Steiner Petrovič
    • 1
    Email author
  • Roman Šturm
    • 2
  • Tomaž Pepelnjak
    • 2
  1. 1.Institute of Metals and TechnologyLjubljanaSlovenia
  2. 2.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations