, Volume 71, Issue 12, pp 4639–4646 | Cite as

Evaluation of Maghemite-Rich Iron Oxide Composite Prepared from Magnetite as Adsorbent for Gold from Chloride Solution

  • April Rose Malagum Calderon
  • Richard Diaz AlorroEmail author
  • Bogale Tadesse
  • Kyoungkeun Yoo
  • Carlito Baltazar Tabelin
Rare Metal Recovery from Secondary Resources


The capacity and effectiveness of a composite magnetic iron oxide, consisting mainly of maghemite \( (\gamma {\text{Fe}}_{2} {\text{O}}_{3} ) \), prepared by oxidation of synthetic magnetite at 350°C have been evaluated. X-ray diffraction analysis of the synthesized product indicated an iron oxide with 44%, 33%, and 23% of maghemite, hematite (Fe2O3), and magnetite (Fe3O4), respectively. The produced composite material was used in this study as adsorbent to recover gold from chloride solution. The effects of different process parameters, such as solution pH, contact time, chloride ion concentration, and initial Au concentration, on the recovery of Au were studied. Almost all Au in solution (99.78%) was recovered at pH of about 6.5 after 24 h of contact time. The maximum Au uptake of about 11.5 µmol/g was obtained at initial Au concentration of 3.5 × 10−4 mol/L. No significant difference in Au uptake was observed upon increasing the contact time to 48 h. High chloride concentration was found to be detrimental to Au recovery. These results indicate that the prepared maghemite-rich iron oxide composite is more effective than synthetic magnetite reported in previous studies for recovery of Au from chloride solution.



The authors wish to acknowledge the R&D Center for Valuable Recycling (Global-Top R&BD Program), Ministry of Environment, Republic of Korea (under Project No. 2016002250004) for funding this research.


  1. 1.
    B. Fosu, in Experimental Investigation of Recovering Gold from Maghemite-Rich Magnetic Concentrates by Roasting, eds. by P.R. Taylor, C. Anderson, E. Spiller (MSc Thesis. ProQuest Dissertations Publishing, 2016).Google Scholar
  2. 2.
    T. Iwasaki, K. Kosaka, T. Yabuuchi, S. Watano, T. Yanagida, and T. Kawai, Adv. Powder Technol. 20, 521 (2009).CrossRefGoogle Scholar
  3. 3.
    K.F. Lam, C.M. Fong, K.L. Yeung, and G. McKay, Chem. Eng. J. 145, 185 (2008).CrossRefGoogle Scholar
  4. 4.
    P. Homchuen, R.D. Alorro, N. Hiroyoshi, R. Sato, H. Kijitani, and M. Ito, Miner. Process. Extr. Metall. Rev. 37, 246 (2016).CrossRefGoogle Scholar
  5. 5.
    A.N. Nikoloski and K.-L. Ang, Miner. Process. Extr. Metall. Rev. 35, 369 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Akcil, C. Erust, C.S. Gahan, M. Ozgun, M. Sahin, and A. Tuncuk, Waste Manag. 45, 258 (2015).CrossRefGoogle Scholar
  7. 7.
    Z. Sun, Y. Xiao, H. Agterhuis, J. Sietsma, and Y. Yang, J. Clean. Prod. 112, 2977 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Syed, Hydrometallurgy 115, 30 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Wang, Q. Tan, J. Chiang, and J. Li, Sel. Publ. Chin. Univ. 11, 1 (2017).Google Scholar
  10. 10.
    H.Y. Lee, S.G. Kim, and J.K. Oh, Can. Metall. Q. 36, 149 (1997).Google Scholar
  11. 11.
    P. Navarro, R. Alvarez, C. Vargas, and F.J. Alguacil, Miner. Eng. 17, 825 (2004).CrossRefGoogle Scholar
  12. 12.
    J. Li, M.S. Safarzadeh, M.S. Moats, J.D. Miller, K.M. Levier, M. Dietrich, and R.Y. Wan, Hydrometallurgy 113, 19 (2011).Google Scholar
  13. 13.
    W. Lu, Y. Lu, F. Liu, K. Shang, W. Wang, and Y. Yang, J. Hazard. Mater. 186, 2166 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Aktas and M.H. Morcali, Int. J. Miner. Process. 101, 63 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Navarro, I. Saucedo, M.A. Lira, and E. Guibal, Sep. Sci. Technol. 45, 1950 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Aktas, B. Gozuak, H. Acma, M. Reha Ozalp, and E. Acma, Environ. Chem. Lett. 9, 47 (2011).CrossRefGoogle Scholar
  17. 17.
    R.D. Alorro, N. Hiroyoshi, H. Kijitani, M. Ito, and M. Tsunekawa, Miner. Process. Extr. Metall. Rev. 31, 201 (2010).CrossRefGoogle Scholar
  18. 18.
    M.A. Zazycki, E.H. Tanabe, D.A. Bertuol, and G.L. Dotto, J. Environ. Manag. 188, 18 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Assadian, M. Idris, S. Shahri, and B. Gholampour, Appl. Mech. Mater. 330, 123 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Rahmayanti, S.J. Santosa, and S.J. Sutarno, Int. J. ChemTech Res. 9, 446 (2016).Google Scholar
  21. 21.
    R. Ranjbar, M. Naderi, H. Omidvar, and G. Amoabediny, Hydrometallurgy 143, 54 (2014).CrossRefGoogle Scholar
  22. 22.
    J.C. Aphesteguy, G.V. Kurlyandskaya, J.P. de Celis, A.P. Safronov, and N.N. Schegoleva, Mater. Chem. Phys. 161, 243 (2015).CrossRefGoogle Scholar
  23. 23.
    G. Giakisikli and A.N. Anthemidis, Anal. Chim. Acta 789, 1 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Jean, V. Nachbaur, and J.-M. Le Breton, J. Alloys Compd. 513, 425 (2012).CrossRefGoogle Scholar
  25. 25.
    I. Nyirő-Kósa, A. Rečnik, and M. Pósfai, Interdiscip. Forum Nanoscale Sci. Technol. 14, 1 (2012).Google Scholar
  26. 26.
    L. Shen, Y. Qiao, Y. Guo, S. Meng, G. Yang, M. Wu, and J. Zhao, Ceram. Int. 40, 1519 (2014).CrossRefGoogle Scholar
  27. 27.
    S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, and R. Massart, J. Mater. Res. 13, 2975 (1998).CrossRefGoogle Scholar
  28. 28.
    K.-S. Beata, W. Urszula, S. Dariusz, N. Per, and J. Beilstein, Nanotechnology 6, 1385 (2015).Google Scholar
  29. 29.
    I. Martínez-Mera, C. Gutiérrez-Wing, C. Argánis-Juárez, and A.R. Vilchis-Nestor, Surf. Coat. Technol. 324, 338 (2017).CrossRefGoogle Scholar
  30. 30.
    P.S. Sidhu, R.J. Gilkes, and A.M. Posner, J. Inorg. Nucl. Chem. 39, 1953 (1977).CrossRefGoogle Scholar
  31. 31.
    D. Paktunc, D. Kingston, A. Pratt, and J. McMullen, Can. Miner. 44, 213 (2006).CrossRefGoogle Scholar
  32. 32.
    V.N. Nikiforov, A.E. Goldt, E.A. Gudilin, V.G. Sredin, and V.Y. Irhin, Bull. Russ. Acad. Sci. Phys. 78, 1075 (2014).CrossRefGoogle Scholar
  33. 33.
    W. Kim, C.-Y. Suh, S.-W. Cho, K.-M. Roh, H. Kwon, K. Song, and I.-J. Shon, Talanta 94, 348 (2012).CrossRefGoogle Scholar
  34. 34.
    M. Večeř and J. Pospíšil, Proc. Eng. 42, 1720 (2012).CrossRefGoogle Scholar
  35. 35.
    I. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, and P. Turq, J. Phys. Chem. C 111, 18568 (2007).CrossRefGoogle Scholar
  36. 36.
    D. Vlassopoulos and S.A. Wood, Geochim. Cosmochim. Acta 54, 3 (1990).CrossRefGoogle Scholar
  37. 37.
    C.B. Tabelin, R. Sasaki, T. Igarashi, I. Park, S. Tamoto, T. Arima, M. Ito, and N. Hiroyoshi, Chemosphere 186, 558 (2017).CrossRefGoogle Scholar
  38. 38.
    C.B. Tabelin, R. Sasaki, T. Igarashi, I. Park, S. Tamoto, T. Arima, M. Ito, and N. Hiroyoshi, Chemosphere 188, 444 (2017).CrossRefGoogle Scholar
  39. 39.
    C.B. Tabelin, T. Igarashi, M. Villacorte-Tabelin, I. Park, E.M. Opiso, M. Ito, and N. Hiroyoshi, Sci. Total Environ. 645, 1522 (2018).CrossRefGoogle Scholar
  40. 40.
    K.F. Hayes, C. Papelis, and J.O. Leckie, J. Colloid Interface Sci. 125, 717 (1988).CrossRefGoogle Scholar
  41. 41.
    E.A. Baryshnikova, V.V. Batrakov, and V.V. Egorov, Russ. J. Electrochem. 45, 765 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Western Australian School of Mines: Minerals, Energy and Chemical EngineeringCurtin UniversityKalgoorlieAustralia
  2. 2.Department of Energy and Resources EngineeringKorea Maritime and Ocean University (KMOU)BusanRepublic of Korea
  3. 3.School of Minerals and Energy Resources EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations