Advertisement

Influence of Metal Additives on Microstructure and Properties of Amorphous Metal–SiOC Composites

  • 166 Accesses

  • 1 Citations

Abstract

Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits high strength and plasticity associated with strain hardening, as well as a good thermal stability and irradiation tolerance. In contrast, the Cu-SiOC composite displays a very low plasticity and poor thermal stability. These findings suggest that the metal constituents play a crucial role in developing microstructure and determining properties of metal–amorphous composites.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 186

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Y. Katoh, Q. Huang, Y.-H. Han, and S. Risbud, Scr. Mater. 143, 126 (2018).

  2. 2.

    T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 14 (2010).

  3. 3.

    S.J. Zinkle and G. Was, Acta Mater. 61, 735 (2013).

  4. 4.

    P. Yvon and F. Carré, J. Nucl. Mater. 385, 217 (2009).

  5. 5.

    F. Garner, Compr. Nucl. Mater. 4, 33 (2012).

  6. 6.

    J. Gigax, T. Chen, H. Kim, J. Wang, L. Price, E. Aydogan, S.A. Maloy, D. Schreiber, M. Toloczko, and F. Garner, J. Nucl. Mater. 482, 257 (2016).

  7. 7.

    L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, and Q. Huang, J. Nucl. Mater. 479, 515 (2016).

  8. 8.

    E. Little and D. Stow, J. Nucl. Mater. 87, 25 (1979).

  9. 9.

    M.-L. Lescoat, J. Ribis, Y. Chen, E. Marquis, E. Bordas, P. Trocellier, Y. Serruys, A. Gentils, O. Kaïtasov, and Y. De Carlan, Acta Mater. 78, 328 (2014).

  10. 10.

    I. Monnet, P. Dubuisson, Y. Serruys, M.-O. Ruault, O. Kaı, and B. Jouffrey, J. Nucl. Mater. 335, 311 (2004).

  11. 11.

    A. Certain, S. Kuchibhatla, V. Shutthanandan, D. Hoelzer, and T. Allen, J. Nucl. Mater. 434, 311 (2013).

  12. 12.

    G.R. Odette and D.T. Hoelzer, JOM 62, 84 (2010).

  13. 13.

    A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).

  14. 14.

    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).

  15. 15.

    M. Nastasi, Q. Su, L. Price, J.A. Colón Santana, T. Chen, R. Balerio, and L. Shao, J. Nucl. Mater. 461, 200 (2015).

  16. 16.

    Q. Su, B. Cui, M.A. Kirk, and M. Nastasi, Philos. Mag. Lett. 96, 60 (2016).

  17. 17.

    P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805 (2010).

  18. 18.

    Q. Su, S. King, L. Li, T. Wang, J. Gigax, L. Shao, W.A. Lanford, and M. Nastasi, Scr. Mater. 146, 316 (2018).

  19. 19.

    K. Ming, C. Gu, Q. Su, Y. Wang, A. Zare, D.A. Lucca, M. Nastasi, and J. Wang, J. Nucl. Mater. 516, 289 (2019).

  20. 20.

    J.A. Colón Santana, E.E. Mora, L. Price, R. Balerio, L. Shao, and M. Nastasi, Nucl. Instrum. Methods B 350, 6 (2015).

  21. 21.

    Q. Su, S. Inoue, M. Ishimaru, J. Gigax, T. Wang, H. Ding, M.J. Demkowicz, L. Shao, and M. Nastasi, Sci. Rep. 7, 3900 (2017).

  22. 22.

    C.G. Pantano, A.K. Singh, H. Zhang, and J. Sol-Gel, Sci. Technol. 14, 7 (1999).

  23. 23.

    G.D. Sorarù, D. Suttor, and J. Sol-Gel, Sci. Technol. 14, 69 (1999).

  24. 24.

    R. Harshe, C. Balan, and R. Riedel, J. Eur. Ceram. Soc. 24, 3471 (2004).

  25. 25.

    G.D. Sorarù, E. Dallapiccola, and G. D’Andrea, J. Am. Ceram. Soc. 79, 2074 (1996).

  26. 26.

    T. Rouxel, G.-D. Soraru, and J. Vicens, J. Am. Ceram. Soc. 84, 1052 (2001).

  27. 27.

    T. Rouxel, G. Massouras, G.-D. Sorarù, and J. Sol-Gel, Sci. Technol. 14, 87 (1999).

  28. 28.

    G.D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C. Pantano, J. Am. Ceram. Soc. 85, 1529 (2002).

  29. 29.

    A. Argon, Acta Metall. 27, 47 (1979).

  30. 30.

    A. Greer, Y. Cheng, and E. Ma, Mater. Sci. Eng. R 74, 71 (2013).

  31. 31.

    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

  32. 32.

    M.M. Trexler and N.N. Thadhani, Prog. Mater Sci. 55, 759 (2010).

  33. 33.

    M. Chen, Annu. Rev. Mater. Res. 38, 445 (2008).

  34. 34.

    W.H. Wang, Prog. Mater Sci. 57, 487 (2012).

  35. 35.

    Y. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).

  36. 36.

    J. Pan, Q. Chen, L. Liu, and Y. Li, Acta Mater. 59, 5146 (2011).

  37. 37.

    L. Li, E.R. Homer, and C.A. Schuh, Acta Mater. 61, 3347 (2013).

  38. 38.

    J. Qiao, H. Jia, and P.K. Liaw, Mater. Sci. Eng. R 100, 1 (2016).

  39. 39.

    J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).

  40. 40.

    A. Misra, M. Demkowicz, J. Wang, and R. Hoagland, JOM 60, 39 (2008).

  41. 41.

    A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005).

  42. 42.

    Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).

  43. 43.

    M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Phys. Rev. Lett. 96, 245502 (2006).

  44. 44.

    L. Zhu, S. Shi, K. Lu, and J. Lu, Acta Mater. 60, 5762 (2012).

  45. 45.

    T. Fang, W. Li, N. Tao, and K. Lu, Science 331, 1587 (2011).

  46. 46.

    K. Lu, Science 345, 1455 (2014).

  47. 47.

    X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. USA 111, 7197 (2014).

  48. 48.

    M. Nastasi, N. Michael, J. Mayer, J.K. Hirvonen, and M. James, Ion-Solid Interactions: Fundamentals and Applications (Cambridge: Cambridge University Press, 1996).

  49. 49.

    T. Rouxel, J. Am. Ceram. Soc. 90, 3019 (2007).

  50. 50.

    Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press, 2007).

Download references

Acknowledgements

We acknowledge the partial financial support from the Department of Energy (DOE) Office of Nuclear Energy and Nuclear Energy Enabling Technologies through Award No. DE-NE0008415, and from the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln. The research was performed in part in National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS: 1542182 and the Nebraska Research Initiative. Ion irradiation was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

Author information

Correspondence to Jian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 12166 kb)

Supplementary material 2 (MP4 5659 kb)

Supplementary material 3 (MP4 3849 kb)

Supplementary material 4 (MP4 5777 kb)

Supplementary material 5 (MP4 10054 kb)

Supplementary material 1 (MP4 12166 kb)

Supplementary material 2 (MP4 5659 kb)

Supplementary material 3 (MP4 3849 kb)

Supplementary material 4 (MP4 5777 kb)

Supplementary material 5 (MP4 10054 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ming, K., Su, Q., Gu, C. et al. Influence of Metal Additives on Microstructure and Properties of Amorphous Metal–SiOC Composites. JOM 71, 2445–2451 (2019) doi:10.1007/s11837-019-03484-x

Download citation