pp 1–8 | Cite as

Transformation and Characterization of Cement Clinker Prepared from New Structured Red Mud by Sintering

  • Yanxiu Wang
  • Ting-an ZhangEmail author
  • Yuhai Zhang
  • Guozhi Lv
  • Weiguang Zhang
Characterization of Advanced Sintering Materials


Sodium aluminosilicate hydrate is the main equilibrium solid phase of Bayer red mud. Owing to the alkaline insoluble phase, the saltpetering of Bayer red mud tends to occur over time, even after washing procedures. This prevents the large-scale utilization of Bayer red mud for the production of cement, brick, subgrade materials, etc. In this study, a new type of red mud (C-C residue), structured through calcification–carbonization treatment, was used to produce cement clinker. The mineral transformation was studied and the phase, micromorphology, chemical composition, f-CaO content, bending strength and compressive strength of the clinker were characterized. The results show the transformation of C-C residue into the effective components (Ca3SiO5, Ca2SiO4, Ca2FexAl2–xO5 and Ca3Al2O6) of the cement clinker. The chemical composition, f-CaO content and cement strength met the Chinese national standards. Therefore, sintering C-C residue provides a promising solution to the problem of red mud stockpiling.



This study was financially supported by the National Natural Science Foundation of China (U1710257, U1202274), the State Key Laboratory Fund (YY2016006), the Fundamental Research Fund for the Central Universities of China (N162506003) and the Science and Technology Leading Talents Training Plan (2017HA012).

Supplementary material

11837_2019_3475_MOESM1_ESM.pdf (125 kb)
Supplementary material 1 (PDF 125 kb)


  1. 1.
    Y.X. Wang, T.A. Zhang, G.Z. Lyu, F.F. Guo, W.G. Zhang, and Y.H. Zhang, J. Clean. Prod. 188, 456 (2018).CrossRefGoogle Scholar
  2. 2.
    H.N. Gu, N. Wang, H.B. Liu, Y.H. Fu, H.F. Tang, and Y.J. Tian, Acta Mineral. Sin. S1, 105 (2010).Google Scholar
  3. 3.
    D.Y. Liu and C.S. Wu, Materials 5, 1232 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. Liu, C. Lin, and Y. Wu, J. Hazard. Mater. 1–2, 255 (2007).CrossRefGoogle Scholar
  5. 5.
    X.F. Kong, M. Li, S.G. Xue, W. Hartley, C.R. Chen, C. Wu, X.F. Li, and Y.W. Li, J. Hazard. Mater. 324, 382 (2017).CrossRefGoogle Scholar
  6. 6.
    X.F. Kong, Y. Guo, S.G. Xue, W. Hartley, Y.Z. Ye, and Q.Y. Cheng, J. Clean. Prod. 143, 224 (2017).CrossRefGoogle Scholar
  7. 7.
    X.B. Zhu, L. Wang, and X.M. Guan, J. Hazard. Mater. 286, 85 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Xenidis, A.D. Harokopou, E. Mylona, and G. Brofas, JOM 2, 42 (2005).CrossRefGoogle Scholar
  9. 9.
    F. Yang, The Existing Form of Alkali in Red Mud and the Research of Immobilization Methods, master’s thesis (Taiyuan: North University of China, 2015), pp. 2–8.Google Scholar
  10. 10.
    C. Klauber, M. Graefe, and G. Power, Hydrometallurgy 108, 11 (2011).CrossRefGoogle Scholar
  11. 11.
    C.S. Lv, J.W. Wang, Y.Z. Jia, H.L. Liu, and G.W. Li, J. Saf. Environ. 13, 98 (2013).Google Scholar
  12. 12.
    P.E. Tsakiridis, S. Agatzini-Leonardou, and P. Oustadakis, J. Hazard. Mater. B116, 103 (2004).CrossRefGoogle Scholar
  13. 13.
    L.Y. Li, Waste Manag. 21, 525 (2001).CrossRefGoogle Scholar
  14. 14.
    W.C. Liu, J.K. Yang, and B. Xiao, J. Hazard. Mater. 161, 474 (2009).CrossRefGoogle Scholar
  15. 15.
    G.H. Li, F.Q. Gu, T. Jiang, J. Luo, B.N. Deng, and Z.W. Peng, JOM 69, 315 (2017).CrossRefGoogle Scholar
  16. 16.
    T.A. Zhang, G.Z. Lv, Y. Liu, Z.M. Zhang, X.F. Zhu, Z.H. Dou. International Patent US15/303,408 (US patent), 2014392419 (Australian patent), 14891022.7 (European Patent).Google Scholar
  17. 17.
    G.Z. Lu, T.A. Zhang, X.F. Zhu, Y. Liu, Y.X. Wang, F.F. Guo, Q.Y. Zhao, and C.Z. Zheng, JOM 66, 1616 (2014).CrossRefGoogle Scholar
  18. 18.
    Y.X. Wang, T.A. Zhang, G.Z. Lv, W.G. Zhang, X.F. Zhu, and L.Q. Xie, Light Met. 2017, 61 (2017).Google Scholar
  19. 19.
    J. Zheng, The Basic Research of Recovering Sodium Oxide and Alumina from Sodium Aluminosilicate Hydrate, master’s thesis (Changsha: Central South University, 2012), pp. 1–72.Google Scholar
  20. 20.
    P.J. Gunning, C.D. Hills, and P.J. Carey, Waste Manag. 30, 1081 (2010).CrossRefGoogle Scholar
  21. 21.
    L.C.A. Venancio, J.A.S. Souza, E.N. Macedo, J.N.N. Quaresma, and A.E.M. Paiva, JOM 9, 41 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Kumar, R. Kumar, and A. Bandopadhyay, Resour. Conserv. Recycl. 4, 301 (2006).CrossRefGoogle Scholar
  23. 23.
    A.R. Hind, S.K. Bhargava, and S.C. Grocott, Colloids Surf. A 1-3, 359 (1999).CrossRefGoogle Scholar
  24. 24.
    D.A. Rubinos, V. Valcarcel, G. Spagnoli, and M.T. Barral, JOM 9, 1607 (2017).CrossRefGoogle Scholar
  25. 25.
    X.M. Liu, N. Zhang, H.H. Sun, J.X. Zhang, and L.T. Li, Cem. Concr. Res. 8, 847 (2011).CrossRefGoogle Scholar
  26. 26.
    K. Hammond, B. Mishra, D. Apelian, and B. Blanpain, JOM 3, 340 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yanxiu Wang
    • 1
    • 2
  • Ting-an Zhang
    • 1
    • 2
    Email author
  • Yuhai Zhang
    • 1
    • 2
  • Guozhi Lv
    • 1
    • 2
  • Weiguang Zhang
    • 1
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of EducationShenyangChina

Personalised recommendations