pp 1–10 | Cite as

Microstructural Evolution, Precipitation and Mechanical Properties of 27Cr-4Mo-2Ni Super-Ferritic Stainless Steels

  • Hui-Hu Lu
  • Wei-Wei Lei
  • Yi Luo
  • Jian-Chun Li
  • Zhen-Guang Liu
  • Wei LiangEmail author
Microstructure Evolution During Deformation Processing


Good mechanical properties and excellent pitting corrosion resistance for 0.8 mm-thick 27Cr-4Mo-2Ni super-ferritic stainless steels produced by one-stage cold rolling or two-stage cold rolling together with intermediate annealing processes are achieved. The microstructural evolution, precipitation and their effects on mechanical properties and corrosion resistance are investigated in terms of optical microscopy, scanning electron microscopy, electron backscattered diffraction pattern and transmission electron microscopy. The results demonstrated that the as-received hot-rolled plates consist of single ferrite grains characterized by α-fiber and γ-fiber orientations. A few Laves phases close to Nb(C, N) are formed in the recrystallized sheets solution-treated at 1050°C. After cold-rolling and finally annealing, fine recrystallized grains characterized by weaken γ-fiber orientation, are accomplished. The formation of Laves phases near the spherical Nb(C, N) makes large Nb(C, N) particles change into small granules. Corrosion resistance is more sensitive to Laves phases than mechanical properties. Small grain size improves strength and ductility, while it has a negative influence on resistance to pitting corrosion. Finer grains and a few more Laves phases are gained in steels processed by a one-stage cold-rolling process. The percentage elongation, yield strength (0.2% proof stress), ultimate tensile strength and average corrosion rate of final sheets produced by a one-stage cold-rolling process are 27.3%, 520 MPa, 641 MPa and 0.033 mm/a, respectively, and the values for two-stage cold-rolling process are 24.4%, 494 MPa, 610 MPa and 0.022 mm/a, respectively.



This work was supported by Projects of International Cooperation in Shanxi with contracts of 201603D421026.

Data Availability Statement

All data included in this study are available upon request by contact with the corresponding author.


  1. 1.
    M. Seo, G. Hultquist, C. Leygraf, and N. Sato, Corros. Sci. 26, 957 (1986).CrossRefGoogle Scholar
  2. 2.
    K. Premachandra, M.B. Cartie, and R.H. Eric, Mater. Sci. Technol. 8, 437 (2013).CrossRefGoogle Scholar
  3. 3.
    I.A. Franson, Metall. Trans. 5, 2257 (1974).CrossRefGoogle Scholar
  4. 4.
    H.H. Lu, Y. Luo, H.K. Guo, W.Q. Li, J.C. Li, and W. Liang, Mater. Sci. Eng. A 735, 31 (2018).CrossRefGoogle Scholar
  5. 5.
    T. Yamagishi, M. Akita, M. Nakajima, Y. Uematsu, and K. Tokaji, Procedia Eng. 2, 275 (2010).CrossRefGoogle Scholar
  6. 6.
    T.J. Nichol, A. Datta, and G. Aggen, Metall. Trans. A 11, 573 (1980).CrossRefGoogle Scholar
  7. 7.
    M.B. Cortie and H. Pollak, Mater. Sci. Eng. A 199, 153 (1995).CrossRefGoogle Scholar
  8. 8.
    D.M.E. Villanueva, F.C.P. Junior, R.L. Plaut, and A.F. Padilha, Mater. Sci. Technol. 22, 1098 (2006).CrossRefGoogle Scholar
  9. 9.
    H.H. Lu, H.K. Guo, Y. Luo, Z.G. Liu, W.Q. Li, J.C. Li, and W. Liang, Mater. Des. 160, 999 (2018).CrossRefGoogle Scholar
  10. 10.
    C.J. Park, M.K. Ahnb, and H.S. Kwon, Mater. Sci. Eng. A 418, 211 (2006).CrossRefGoogle Scholar
  11. 11.
    M.A. Streicher, Corrosion 30, 115 (1974).CrossRefGoogle Scholar
  12. 12.
    T.J. Nichol, Metall. Trans. A 8, 229 (1977).CrossRefGoogle Scholar
  13. 13.
    E.L. Brown, M.E. Burnett, P.T. Purtscher, and G. Krauss, Metall. Trans. A 14, 791 (1983).CrossRefGoogle Scholar
  14. 14.
    T.F. Andrade, A.M. Kliauga, R.L. Plaut, and A.F. Padilha, Mater. Charact. 59, 503 (2008).CrossRefGoogle Scholar
  15. 15.
    H.P. Qu, Y.P. Lang, H.T. Chen, F. Rong, and X.F. Kang, Mater. Sci. Eng. A 534, 436 (2012).CrossRefGoogle Scholar
  16. 16.
    L. Ma, S.S. Hu, J.Q. Shen, J. Han, and Z.X. Zhu, J. Mater. Sci. Technol. 32, 552 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Han, H.J. Li, and H.G. Xu, Mater. Des. 58, 518 (2014).CrossRefGoogle Scholar
  18. 18.
    M.Z. Quadir and B.J. Duggan, ISIJ Int. 46, 1495 (2006).CrossRefGoogle Scholar
  19. 19.
    C. Zhang, Z.Y. Liu, and G.D. Wang, J. Mater. Process. Technol. 211, 1051 (2011).CrossRefGoogle Scholar
  20. 20.
    V. Mehtonen, L.P. Karjalainen, and D.A. Porter, Mater. Sci. Eng. A 571, 1 (2013).CrossRefGoogle Scholar
  21. 21.
    H.T. Liu, Z.Y. Liu, and G.D. Wang, ISIJ Int. 49, 890 (2009).CrossRefGoogle Scholar
  22. 22.
    M.Y. Huh and O. Engler, Mater. Sci. Eng. A 308, 74 (2001).CrossRefGoogle Scholar
  23. 23.
    Z.Y. Liu, F. Gao, L.Z. Jiang, and G.D. Wang, Mater. Sci. Eng. A 527, 3800 (2010).CrossRefGoogle Scholar
  24. 24.
    M.P. Sello and W.E. Stumpf, Mater. Sci. Eng. A 528, 1840 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hui-Hu Lu
    • 1
    • 2
  • Wei-Wei Lei
    • 1
  • Yi Luo
    • 1
  • Jian-Chun Li
    • 3
  • Zhen-Guang Liu
    • 4
  • Wei Liang
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Department of Mechanical and Electrical EngineeringYuncheng Polytechnic CollegeYunchengPeople’s Republic of China
  3. 3.Taiyuan Iron & Steel Limited Liability CompanyTaiyuanPeople’s Republic of China
  4. 4.College of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations