Advertisement

JOM

pp 1–7 | Cite as

Dynamic Precipitation Behavior of a Mg-Zn-Ca-La Alloy During Deformation

  • Yuzhou DuEmail author
  • Yanfeng Ge
  • Bailing Jiang
Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance
  • 27 Downloads

Abstract

The dynamic precipitation behavior of a Mg-Zn-Ca-La alloy during deformation has been investigated. A large amount of fine precipitates was detected after deformation, indicating that dynamic precipitation occurred. The precipitates at the grain boundaries included Ca2Mg6Zn3 and Mg4Zn7, whereas the intergranular precipitates were mainly Mg4Zn7. Ca, which has a large atomic radius, preferred to segregate to grain boundaries, where it resulted in the formation of Ca2Mg6Zn3. Zn, which has a similar diffusion coefficient to Mg, resulted in Mg4Zn7 being distributed around the matrix. The stability of the Mg4Zn7 phase was enhanced in the as-extruded Mg-Zn-Ca-La alloy. The grain-boundary precipitates acted as effective obstacles to grain growth, giving rise to the formation of a refined microstructure. The intragranular Mg4Zn7 precipitates hindered the mobility of dislocations, improving the mechanical properties. Additionally, a high density of ultrafine nanoparticles was detected in the un-dynamically recrystallized (DRXed) region, being related to the high density of dislocations therein.

Notes

Acknowledgements

We are grateful for support from the National Natural Science Foundation of China (No. 51801150).

References

  1. 1.
    M. Cihova, R. Schäublin, L.B. Hauser, S.S.A. Gerstl, C. Simson, P.J. Uggowitzer, and J.F. Löffler, Acta Mater. 158, 214 (2018).CrossRefGoogle Scholar
  2. 2.
    B. Kim, S.-M. Baek, J.G. Lee, and S.S. Park, J. Alloys Compd. 706, 56 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Jiang, M. Song, H. Yan, C. Yang, and S. Ni, Mater. Charact. 121, 135 (2016).CrossRefGoogle Scholar
  4. 4.
    C.L. Mendis, K.U. Kainer, and N. Hort, JOM US 67, 2427 (2015).CrossRefGoogle Scholar
  5. 5.
    S.M. Jo, S.D. Kim, T.-H. Kim, Y. Go, C.-W. Yang, B.S. You, and Y.M. Kim, J. Alloys Compd. 749, 794 (2018).CrossRefGoogle Scholar
  6. 6.
    Y. Zhou, Z. Chen, J. Ji, and Z. Sun, Mater. Sci. Eng. A 707, 110 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Liu, Z. Wu, R. Yang, J. Wei, Y. Yu, P.C. Skaret, and H.J. Roven, Prog. Nat. Sci. Mater. Int. 25, 153 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Du, M. Zheng, B. Jiang, and K. Zhou, JOM US 70, 1611 (2018).CrossRefGoogle Scholar
  9. 9.
    T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono, Acta Mater. 99, 176 (2015).CrossRefGoogle Scholar
  10. 10.
    T.T. Sasaki, J.D. Ju, K. Hono, and K.S. Shin, Scr. Mater. 61, 80 (2009).CrossRefGoogle Scholar
  11. 11.
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, and I.S. Golovin, Mater. Des. 98, 285 (2016).CrossRefGoogle Scholar
  12. 12.
    H. Okamoto, J. Phase Equilib. 16, 474 (1995).CrossRefGoogle Scholar
  13. 13.
    L. Wei, G. Dunlop, and H. Westengen, Metall. Mater. Trans. A 26, 1705 (1995).CrossRefGoogle Scholar
  14. 14.
    S. Wei, T. Zhu, H. Hou, J. Kim, E. Kobayashi, T. Sato, M. Hodgson, and W. Gao, Mater. Sci. Eng. A 597, 52 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Geng, X. Gao, X.Y. Fang, and J.F. Nie, Scr. Mater. 64, 506 (2011).CrossRefGoogle Scholar
  16. 16.
    H. Somekawa, A. Singh, and T. Mukai, Scr. Mater. 60, 411 (2009).CrossRefGoogle Scholar
  17. 17.
    T. Bhattacharjee, T. Nakata, T.T. Sasaki, S. Kamado, and K. Hono, Scr. Mater. 90–91, 37 (2014).CrossRefGoogle Scholar
  18. 18.
    H. Somekawa, M. Yamaguchi, Y. Osawa, A. Singh, M. Itakura, T. Tsuru, and T. Mukai, Philos. Mag. 95, 869 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, and B. Jiang, Mater. Sci. Eng. A 656, 67 (2016).CrossRefGoogle Scholar
  20. 20.
    L. Ye, Y. Liu, D.S. Zhao, Y.L. Zhuang, S.B. Gao, X.Q. Liu, J.P. Zhou, J.N. Gui, and J.B. Wang, Mater. Sci. Eng. A 724, 121 (2018).CrossRefGoogle Scholar
  21. 21.
    A. Hadadzadeh, F. Mokdad, B.S. Amirkhiz, M.A. Wells, B.W. Williams, and D.L. Chen, Mater. Sci. Eng. A 724, 421 (2018).CrossRefGoogle Scholar
  22. 22.
    C.L. Mendis, K. Oh-ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Acta Mater. 57, 749 (2009).CrossRefGoogle Scholar
  23. 23.
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, Mater. Des. 85, 549 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Chen, J. Chen, H. Yan, B. Su, M. Song, and S. Zhu, Mater. Des. 100, 58 (2016).CrossRefGoogle Scholar
  25. 25.
    J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler, Acta Mater. 98, 423 (2015).CrossRefGoogle Scholar
  26. 26.
    Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lv, Mater. Sci. Eng. A 582, 134 (2013).CrossRefGoogle Scholar
  27. 27.
    F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010).CrossRefGoogle Scholar
  28. 28.
    K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, Prog. Mater Sci. 92, 284 (2018).CrossRefGoogle Scholar
  29. 29.
    J.D. Robson, D.T. Henry, and B. Davis, Acta Mater. 57, 2739 (2009).CrossRefGoogle Scholar
  30. 30.
    J.D. Robson, D.T. Henry, and B. Davis, Mater. Sci. Eng. A 528, 4239 (2011).CrossRefGoogle Scholar
  31. 31.
    J.B. Yang, Y.N. Osetsky, R.E. Stoller, Y. Nagai, and M. Hasegawa, Scr. Mater. 66, 761 (2012).CrossRefGoogle Scholar
  32. 32.
    V.K. Lindroos and H.M. Miekk-Oja, Philos. Mag. J. Theor. Exp. Appl. Phys. 16, 593 (1967).Google Scholar
  33. 33.
    S.P. Agrawal, G.A. Sargent, and H. Conrad, Metall. Trans. 5, 2415 (1974).CrossRefGoogle Scholar
  34. 34.
    C. Mendis, K. Oh-Ishi, and K. Hono, Metall. Mater. Trans. A 43, 3978 (2012).CrossRefGoogle Scholar
  35. 35.
    P.M. Jardim, G. Solorzano, and J.B. Vander Sande, Microsc. Microanal. 8, 487 (2002).CrossRefGoogle Scholar
  36. 36.
    J.R. TerBush, N. Stanford, J.-F. Nie, and M.R. Barnett, Metall. Mater. Trans. A 44, 5216 (2013).CrossRefGoogle Scholar
  37. 37.
    T. Bhattacharjee, C.L. Mendis, T.T. Sasaki, T. Ohkubo, and K. Hono, Scr. Mater. 67, 967 (2012).CrossRefGoogle Scholar
  38. 38.
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964).CrossRefGoogle Scholar
  39. 39.
    A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
  40. 40.
    H.-T. Ma, R. Yuan, Y.-P. Xie, H. Gao, L.-J. Hu, X.-D. Li, Y.-C. Qian, and Z.-H. Dai, Acta Mater. 147, 42 (2018).CrossRefGoogle Scholar
  41. 41.
    C. Liu, H. Chen, and J.-F. Nie, Scr. Mater. 123, 5 (2016).CrossRefGoogle Scholar
  42. 42.
    Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).CrossRefGoogle Scholar
  43. 43.
    T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, and K. Hono, Scr. Mater. 59, 1111 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China
  2. 2.Shaanxi Province Engineering Research Center for Magnesium AlloysXi’an University of TechnologyXi’anPeople’s Republic of China

Personalised recommendations