pp 1–7 | Cite as

Effect of FeO on Spinel Crystallization and Chromium Stability in Stainless Steel-Making Slag

  • Qiang Zeng
  • Jianli LiEmail author
  • Qiqiang Mou
  • Hangyu Zhu
  • Zhengliang Xue
Urban Mining: Characterization and Recycling of Solid Wastes


Chromium alloy is a key ingredient in stainless steel production, and slag forms a significant proportion of the production process’s output. To investigate how to avoid the leaching of Cr(VI) from stainless steel slag into the environment, we examined the effect of the FeO content on the stability of chromium in the CaO-SiO2-MgO-Al2O3-Cr2O3 system in laboratory experiments. The solidification process was then studied using FactSage 7.0. The results indicate that the leaching of Cr(VI) can be reduced. As the content of FeO increases in the slag, the content of chromium in the matrix decreases significantly. In our experiments, the concentration of the Cr(VI) leaching was decreased from 0.1434 mg/L to 0.0021 mg/L, and the size of spinel crystals in the slag increased from 5.77 μm to 8.40 μm. The content of calcium and silicon was reduced and the level of ferrum improved in the spinel crystals after the addition of FeO. FeO promotes the formation of a core–shell heterostructure in spinel crystals, with the Fe-enriched shell notably improving the stability of the chromium.



The research is supported by National Natural Science Foundation of China (No. 51404173), Hubei Provincial Natural Science Foundation (No. 2016CFB579), China Postdoctoral Science Foundation (No. 2014M562073) and State Key Laboratory of Refractories and Metallurgy. The authors express their sincere gratitude and appreciation to Prof. Mulin Zhang, Wuhan University of Science and Technology, for his valuable advice.


  1. 1.
    D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, and T.O. Shepker, Environ. Sci. Technol. 34, 1576 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Estokova, L. Palascakova, and M. Kanuchova, Int. J. Environ. Res. Public Health 15, 824 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Fathima and J.R. Rao, Arch. Microbiol. 200, 1 (2017).Google Scholar
  4. 4.
    Z. Junxue, Z. Zhongyu, S. Ruimeng, L. Xiaoming, and C. Yaru, JOM 70, 2825 (2018).CrossRefGoogle Scholar
  5. 5.
    C.J. Wu, L.E. Fried, L.H. Yang, N. Goldman, and S. Bastea, Nat. Chem. 1, 57 (2009).CrossRefGoogle Scholar
  6. 6.
    F. Moreno-Navarro, G.R. Iglesias, and M.C. Rubio-Gámez, Smart Mater. Struct. 25, 115036 (2016).CrossRefGoogle Scholar
  7. 7.
    S.J. Tae and K. Morita, Met. Mater. Int. 23, 576 (2017).CrossRefGoogle Scholar
  8. 8.
    K. Pillay, B.H. Von, and J. Petersen, Chemosphere 52, 1771 (2003).CrossRefGoogle Scholar
  9. 9.
    S.A.S. Dare, J.A. Pearce, I. Mcdonald, and M.T. Styles, Chem. Geol. 261, 199 (2009).CrossRefGoogle Scholar
  10. 10.
    M.N. Taran, F. Parisi, D. Lenaz, and A.A. Vishnevskyy, Phys. Chem. Miner. 41, 593 (2014).CrossRefGoogle Scholar
  11. 11.
    J.P. Beukes and R.N. Guest, Miner. Eng. 14, 423 (2001).CrossRefGoogle Scholar
  12. 12.
    I. Strandkvist, Å. Sandström, and F. Engström, Steel Res. Int. 88, 1600322 (2017).CrossRefGoogle Scholar
  13. 13.
    J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, and N.Y. Tian, Int. J. Miner. Metall. Mater. 20, 253 (2013).CrossRefGoogle Scholar
  14. 14.
    J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Int. J. Miner. Metall. Mater. 32, 07 (2017).Google Scholar
  15. 15.
    M. Xiong and A.V. Kuznetsov, Flow. Turbul. Combust. 67, 305 (2001).CrossRefGoogle Scholar
  16. 16.
    I. Strandkvist, B. Björkman, and F. Engström, Can. Metall. Q. 54, 446 (2016).CrossRefGoogle Scholar
  17. 17.
    E.V. Sokol, O.L. Gaskova, S.N. Kokh, O.A. Kozmenko, Y.V. Seryotkin, Y. Vapnik, and M.N. Murashko, Am. Mineral. 96, 659 (2011).CrossRefGoogle Scholar
  18. 18.
    G. Chichinadze, D. Shengelia, T. Tsutsunava, N. Maisuradze and G. Beridze, Icges 2017: International Conference on Geological and Earth Sciences, 1 (2017).Google Scholar
  19. 19.
    Y. Samada, T. Miki, and M. Hino, ISIJ Int. 51, 728 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Cornacchia, S. Agnelli, M. Gelfi, G. Ramorino, and R. Roberti, JOM 67, 1 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Zhang, H.S. Xu, D.H. Wang, Z.H. Zhang, Z.Y. Chen, and R.M. Zhang, Acta. Geosci. Sinica 30, 599 (2009).Google Scholar
  22. 22.
    K.Y. Lee, J.M. Park, and C.M. Park, VII International Conference on Molten Slags Fluxes and Salts, 601 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Qiang Zeng
    • 1
  • Jianli Li
    • 1
    • 3
    Email author
  • Qiqiang Mou
    • 1
    • 2
  • Hangyu Zhu
    • 1
    • 2
  • Zhengliang Xue
    • 1
    • 2
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  3. 3.Hubei Provincial Key Laboratory for New Processes of Ironmaking and SteelmakingWuhan University of Science and TechnologyWuhan China

Personalised recommendations