Advertisement

JOM

pp 1–8 | Cite as

Twinning Behavior of Commercial-Purity Titanium Subjected to Cryorolling

  • Xiao Song
  • Jinru LuoEmail author
  • Jishan ZhangEmail author
  • Linzhong Zhuang
  • Hua Cui
  • Yi Qiao
Microstructure Evolution During Deformation Processing
  • 16 Downloads

Abstract

Deformation twinning was investigated in a commercial-purity titanium alloy cryorolled to 4% reduction. Significantly more twins were found in the cryorolled sample compared with that rolled at room temperature. {11\( \bar{2} \)2} twinning was the dominant twin type, with some {11\( \bar{2} \)4} twins as the most abundant accompaniment. The twin variant selection is discussed in terms of the Schmid factor (SF). Most of the {11\( \bar{2} \)2} and {11\( \bar{2} \)4} twins obeyed Schmid’s law, resulting in considerable external strain accommodation. The c-axes of the parent grains with {11\( \bar{2} \)2} and {11\( \bar{2} \)4} twinning were nearly parallel to the normal direction, with the latter being closer. Both the {11\( \bar{2} \)2} and {11\( \bar{2} \)4} twins tended to have high SF in one grain, and they usually accompanied each other. Furthermore, the cryorolled sample exhibited better mechanical properties compared with that rolled at room temperature.

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 51401019), Major State Research and Development Program of China (No. 2016YFB0300801), and the Constructed Project for Key Laboratory of Beijing, China. The authors sincerely thank Prof. Xiaohua Chen for conducting the EBSD measurements.

References

  1. 1.
    X.Q. Guo, A. Chapuis, P.D. Wu, Q. Liu, and X.B. Mao, Mater. Des. 98, 333 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Yoo and J. Lee, Philos. Mag. A 63, 987 (1991).CrossRefGoogle Scholar
  3. 3.
    J. Wang, Q. Yu, Y. Jiang, and I.J. Beyerlein, JOM 66, 95 (2014).CrossRefGoogle Scholar
  4. 4.
    C.N. Tomé, I.J. Beyerlein, J. Wang, and R.J. McCabe, JOM 63, 19 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Chapuis and J.H. Driver, Acta Mater. 59, 1986 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Chakkedath and C.J. Boehlert, JOM 67, 1748 (2015).CrossRefGoogle Scholar
  7. 7.
    Y. Wang, W. He, N. Liu, A. Chapuis, B. Luan, and Q. Liu, Mater. Charact. 136, 1 (2018).CrossRefGoogle Scholar
  8. 8.
    F. Xu, X. Zhang, H. Ni, and Q. Liu, Mater. Sci. Eng. A 541, 190 (2012).CrossRefGoogle Scholar
  9. 9.
    J.R. Luo, X. Song, L. Zhuang, and J. Zhang, J. Iron Steel Res. Int. 23, 74 (2016).CrossRefGoogle Scholar
  10. 10.
    S.J. Lainé and K.M. Knowles, Philos. Mag. 95, 2153 (2015).CrossRefGoogle Scholar
  11. 11.
    F.D. Rosi, F.C. Perkins, and L.L. Seigle, JOM 8, 115 (1956).CrossRefGoogle Scholar
  12. 12.
    J. Luo, X. Song, and M. Wang, J. Iron Steel Res. Int. 25, 275 (2018).CrossRefGoogle Scholar
  13. 13.
    S. Wang, Y. Zhang, C. Schuman, J.-S. Lecomte, X. Zhao, L. Zuo, M.-J. Philippe, and C. Esling, Acta Mater. 82, 424 (2015).CrossRefGoogle Scholar
  14. 14.
    X.G. Deng, S.X. Hui, W.J. Ye, and X.Y. Song, Mater. Sci. Eng. A 575, 15 (2013).CrossRefGoogle Scholar
  15. 15.
    L. Bao, Y. Zhang, C. Schuman, J.-S. Lecomte, M.-J. Philippe, X. Zhao, and C. Esling, J. Appl. Crystallogr. 46, 1397 (2013).CrossRefGoogle Scholar
  16. 16.
    S. Xu, M. Gong, C. Schuman, J.-S. Lecomte, X. Xie, and J. Wang, Acta Mater. 132, 57 (2017).CrossRefGoogle Scholar
  17. 17.
    H. Qin and J.J. Jonas, Acta Mater. 75, 198 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Xu, C. Schuman, and J.-S. Lecomte, Scr. Mater. 116, 152 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Xu, M. Gong, Y. Jiang, C. Schuman, J.-S. Lecomte, and J. Wang, Acta Mater. 152, 58 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Wang, C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, J.M. Raulot, M.J. Philippe, X. Zhao, and C. Esling, Acta Mater. 60, 3912 (2012).CrossRefGoogle Scholar
  21. 21.
    C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, J.M. Raulot, M.J. Philippe, and C. Esling, Adv. Eng. Mater. 13, 1114 (2011).CrossRefGoogle Scholar
  22. 22.
    Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Acta Mater. 57, 761 (2009).CrossRefGoogle Scholar
  23. 23.
    C. Zener and J.H. Hollomon, J. Appl. Phys. 15, 22 (1944).CrossRefGoogle Scholar
  24. 24.
    G. Malakondaiah and P. Rama Rao, Acta Metall. 29, 1263 (1981).CrossRefGoogle Scholar
  25. 25.
    P. Vo, M. Jahazi, S. Yue, and P. Bocher, Mater. Sci. Eng. A 447, 99 (2007).CrossRefGoogle Scholar
  26. 26.
    J.R. Luo, A. Godfrey, W. Liu, and Q. Liu, Acta Mater. 60, 1986 (2012).CrossRefGoogle Scholar
  27. 27.
    L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tomé, Acta Mater. 57, 6047 (2009).CrossRefGoogle Scholar
  28. 28.
    H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu, Acta Mater. 128, 313 (2017).CrossRefGoogle Scholar
  29. 29.
    J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and Ė. Martin, Acta Mater. 59, 2046 (2011).CrossRefGoogle Scholar
  30. 30.
    J.W. Christian and S. Mahajan, Prog. Mater Sci. 39, 1 (1995).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute of MaterialsChina Academy of Engineering PhysicsMianyangChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations