Advertisement

JOM

pp 1–9 | Cite as

Reduction of Carbon Dioxide to Carbon Nanostructures in Molten Salt: The Effect of Electrolyte Composition

  • Soodeh Abbasloo
  • Mehdi Ojaghi-IlkhchiEmail author
  • Mahdi Mozammel
Technical Article
  • 13 Downloads

Abstract

The effect of the composition of the molten salt electrolyte on the morphology of carbon produced via reduction of carbon dioxide has been studied. Three different molten salt compositions (CaCl2-CaO-Na2Co3, CaCl2-Na2Co3, and CaCl2-CaO) were applied at constant potential difference of 3.0 V and carbon dioxide flow of ~ 1 mL/s for 120 min, and the current was recorded at 10-s intervals. The powder products obtained from the solidified electrolyte and cathode surface were then characterized by scanning electron microscopy and energy-dispersive spectroscopy. Rod-like structures with diameter of 120 nm formed on the surface of the steel cathode after electrolysis using CaCl2-0.5% M CaO-2% M Na2CO3 or CaCl2-2% M Na2CO3.

Notes

Acknowledgements

The authors thank Sahand University of Technology for financial support.

Supplementary material

11837_2019_3449_MOESM1_ESM.pdf (287 kb)
Supplementary material 1 (PDF 286 kb)

References

  1. 1.
    I.A. Novoselova, S.V. Kuleshov, S.V. Volkov, and V.N. Bykov, Electrochim. Acta 211, 343 (2016).CrossRefGoogle Scholar
  2. 2.
    W. Hsu, J. Hare, M. Terrones, H. Kroto, D. Walton, and P. Harris, Nature 377, 687 (1995).CrossRefGoogle Scholar
  3. 3.
    G.Z. Chen, I. Kinloch, M.S. Shaffer, D.J. Fray, and A.H. Windle, High Temp. Mater. Processes 2, 459 (1998).CrossRefGoogle Scholar
  4. 4.
    G.Z. Chen and D.J. Fray, J. Min. Metall. Sect. B: Metall. 39, 309 (2003).CrossRefGoogle Scholar
  5. 5.
    G.Z. Chen, X. Fan, A. Luget, M.S. Shaffer, D.J. Fray, and A.H. Windle, J. Electroanal. Chem. 446, 1 (1998).CrossRefGoogle Scholar
  6. 6.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).CrossRefGoogle Scholar
  7. 7.
    A.T. Dimitrov, G.Z. Chen, I.A. Kinloch, and D.J. Fray, Electrochim. Acta 48, 91 (2002).CrossRefGoogle Scholar
  8. 8.
    A.R. Kamali, C. Schwandt, and D.J. Fray, Mater. Charact. 62, 987 (2011).CrossRefGoogle Scholar
  9. 9.
    W. Hsu, M. Terrones, J. Hare, H. Terrones, H. Kroto, and D. Walton, Chem. Phys. Lett. 262, 161 (1996).CrossRefGoogle Scholar
  10. 10.
    C. Schwandt, A.T. Dimitrov, and D.J. Fray, J. Electroanal. Chem. 647, 150 (2010).CrossRefGoogle Scholar
  11. 11.
    A.R. Kamali and D.J. Fray, Carbon 77, 835 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Ingram, B. Baron, and G. Janz, Electrochim. Acta 11, 1629 (1996).CrossRefGoogle Scholar
  13. 13.
    P. Lorenz and G. Janz, Electrochim. Acta 15, 1025 (1970).CrossRefGoogle Scholar
  14. 14.
    H. Groult, B. Kaplan, F. Lantelme, S. Komaba, N. Kumagai, H. Yashiro, T. Nakajima, B. Simon, and A. Barhoun, Solid State Ionics 177, 869 (2006).CrossRefGoogle Scholar
  15. 15.
    I. Novoselova, N. Oliynyk, and S. Volkov, in Hydrogen Mater. Sci. Chem. Carbon Nanomater.: Springer, 459 (2007).Google Scholar
  16. 16.
    K. Le Van, H. Groult, F. Lantelme, M. Dubois, D. Avignant, A. Tressaud, S. Komaba, N. Kumagai, and S. Sigrist, Electrochim. Acta 54, 4566 (2009).CrossRefGoogle Scholar
  17. 17.
    Q. Song, Q. Xu, Y. Wang, X. Shang, and Z. Li, Thin Solid Films 520, 6856 (2012).CrossRefGoogle Scholar
  18. 18.
    K. Otake, H. Kinoshita, T. Kikuchi, and R.O. Suzuki, Electrochim. Acta 100, 293 (2013).CrossRefGoogle Scholar
  19. 19.
    D. Tang, H. Yin, X. Mao, W. Xiao, and D. Wang, Electrochim. Acta 114, 567 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Yin, X. Mao, D. Tang, W. Xiao, L. Xing, H. Zhu, D. Wang, and D.R. Sadoway, Energy Environ. Sci. 6, 1538 (2013).CrossRefGoogle Scholar
  21. 21.
    H.V. Ijije, C. Sun, and G.Z. Chen, Carbon 73, 163 (2014).CrossRefGoogle Scholar
  22. 22.
    I. Novoselova, N.F. Oliinyk, S.V. Volkov, A.A. Konchits, I.B. Yanchuk, V.S. Yefanov, S.P. Kolesnik, and M.V. Karpets, Phys. E (Amsterdam, Neth.) 40, 2231 (2008).CrossRefGoogle Scholar
  23. 23.
    I. Novoselova, S. Volkov, N. Oliinyk, and V. Shapoval, J. Min. Metall. Sect. B: Metall. 39, 281 (2003).CrossRefGoogle Scholar
  24. 24.
    H.V. Ijije, R.C. Lawrence, and G.Z. Chen, RSC Adv. 4, 35808 (2014).CrossRefGoogle Scholar
  25. 25.
    H.V. Ijije, R.C. Lawrence, N.J. Siambun, S.M. Jeong, D.A. Jewell, D. Hu, and G.Z. Chen, Faraday Discuss. 172, 105 (2014).CrossRefGoogle Scholar
  26. 26.
    H. Wu, Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, J. Ren, M. Lefler, B. Wang, and S. Licht, Carbon 106, 208 (2016).CrossRefGoogle Scholar
  27. 27.
    P. Ferro, B. Mishra, D. Olson, and W. Averill, Waste Manag. 17, 451 (1998).CrossRefGoogle Scholar
  28. 28.
    N. Emery, C. Hérold, and P. Lagrange, J. Solid State Chem. 178, 2947 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Pruvost, C. Hérold, A. Hérold, and P. Lagrange, Eur. J. Inorg. Chem. 2004, 1661 (2004).CrossRefGoogle Scholar
  30. 30.
    S. Pruvost, C. Hérold, A. Hérold, and P. Lagrange, Carbon 42, 1825 (2004).CrossRefGoogle Scholar
  31. 31.
    N. Emery, S. Pruvost, C. Hérold, and P. Lagrange, J. Phys. Chem. Solids 67, 1137 (2006).CrossRefGoogle Scholar
  32. 32.
    E.B. Freidina and D.J. Fray, Thermochim. Acta 356, 97 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Soodeh Abbasloo
    • 1
  • Mehdi Ojaghi-Ilkhchi
    • 1
    Email author
  • Mahdi Mozammel
    • 1
  1. 1.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations