pp 1–6 | Cite as

Enhanced High-Voltage Cycling Stability of Nickel-Rich Cathode Materials by Surface Modification Using LaFeO3 Ionic Conductor

  • Jufeng Zhang
  • Ting Ren
  • Jianguo Duan
  • Xue Li
  • Peng Dong
  • Yingjie Zhang
  • Ding WangEmail author
Powder Materials for Energy Applications


LaFeO3 is introduced as an ideal protective coating layer with excellent conductivity to enhance LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material for use at higher operating voltage (especially 4.6 V). Various material characterization methods are employed to characterize the structural and morphological characteristics of the pristine and modified samples, including x-ray diffraction analysis, field-emission scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The electrode with 2 wt.% LaFeO3 coating showed capacity retention of 80% at current density of 1 C after 200 charge/discharge cycles at 25°C, compared with 63% for the pristine electrode. Cyclic voltammogram results indicated that the LaFeO3 coating reduced the cell polarization during extended cycling. The results therefore show that LaFeO3 has potential for coating of NCM523 for use even at high voltage.



The authors acknowledge financial support from the National Science Foundation of China (51804149, 51764029), Provincial Natural Science Foundation of Yunnan (2018FD039), and National Key R&D Program of China (2018YFB0104000).

Supplementary material

11837_2019_3446_MOESM1_ESM.pdf (734 kb)
Supplementary material 1 (PDF 734 kb)


  1. 1.
    J.M. Tarascon and M. Armand, Nature 414, 359 (2001).CrossRefGoogle Scholar
  2. 2.
    W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Angew. Chem. Int. Ed. 54, 4440 (2015).CrossRefGoogle Scholar
  3. 3.
    P. Dong, D. Wang, Y. Yao, X. Li, Y. Zhang, J. Ru, and T. Ren, J. Power Sources 344, 111 (2017).CrossRefGoogle Scholar
  4. 4.
    J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
  5. 5.
    K.P. Wu, K. Du, and G.R. Hu, J. Mater. Chem. A 6, 1057 (2018).CrossRefGoogle Scholar
  6. 6.
    S.K. Jung, H. Gwon, J. Hong, K.Y. Park, D.H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, Adv. Energy Mater. 4, 1300787 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Noh and J. Cho, J. Electrochem. Soc. 160, A105 (2012).CrossRefGoogle Scholar
  8. 8.
    K.P. Wu, K. Du, and G.R. Hu, J. Mater. Chem. A 6, 3444 (2018).CrossRefGoogle Scholar
  9. 9.
    K.P. Wu, D. Liu, and Y. Tang, Electrochim. Acta 263, 515 (2018).CrossRefGoogle Scholar
  10. 10.
    Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, and K. Amine, Nat. Mater. 8, 320 (2009).CrossRefGoogle Scholar
  11. 11.
    F. Wu, J. Tian, Y. Su, Y. Guan, Y. Jin, Z. Wang, T. He, L. Bao, and S. Chen, J. Power Sources 269, 747 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang, Y. Lai, and J. Li, Electrochim. Acta 135, 77 (2014).CrossRefGoogle Scholar
  13. 13.
    D. Wang, Z. Wang, X. Li, H. Guo, Y. Xu, Y. Fan, and W. Pan, Appl. Surf. Sci. 371, 172 (2016).CrossRefGoogle Scholar
  14. 14.
    D. Wang, X. Li, Z. Wang, H. Guo, Y. Xu, Y. Fan, and J. Ru, Electrochim. Acta 188, 48 (2016).CrossRefGoogle Scholar
  15. 15.
    K. Liu, G.L. Yang, Y. Dong, T. Shi, and L. Chen, J. Power Sources 281, 370 (2015).CrossRefGoogle Scholar
  16. 16.
    J.Z. Kong, C. Ren, G.A. Tai, X. Zhang, A.D. Li, D. Wu, H. Li, and F. Zhou, J. Power Sources 266, 433 (2014).CrossRefGoogle Scholar
  17. 17.
    X.H. Liu, L.Q. Kou, T. Shi, K. Liu, and L. Chen, J. Power Sources 267, 874 (2014).CrossRefGoogle Scholar
  18. 18.
    K. Yang, L. Fan, J. Guo, and X. Qu, Electrochim. Acta 63, 363 (2012).CrossRefGoogle Scholar
  19. 19.
    H.G. Song, K.-S. Park, and Y.J. Park, Solid State Ion. 225, 532 (2012).CrossRefGoogle Scholar
  20. 20.
    D. Wang, X. Li, Z. Wang, H. Guo, Z. Huang, L. Kong, and J. Ru, J. Alloys Compd. 647, 612 (2015).CrossRefGoogle Scholar
  21. 21.
    D. Wang, X. Li, Z. Wang, H. Guo, X. Chen, X. Zheng, Y. Xu, and J. Ru, Electrochim. Acta 174, 1225 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. Shao-Horn, Nat. Chem. 3, 546 (2011).CrossRefGoogle Scholar
  23. 23.
    P. Ciambelli, S. Cimino, R.S. De, L. Lisi, G. Minelli, P. Porta, and G. Russo, Appl. Catal. 29, 239 (2001).CrossRefGoogle Scholar
  24. 24.
    P.V. Gosavi and R.B. Biniwale, Mater. Chem. Phys. 119, 324 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Mou, Y. Deng, L. He, Q. Zheng, N. Jiang, and D. Lin, Electrochim. Acta 260, 101 (2018).CrossRefGoogle Scholar
  26. 26.
    Q. Ye, J. Ru, J. Peng, G. Chen, and D. Wang, Chem. Eng. J. 331, 570 (2018).CrossRefGoogle Scholar
  27. 27.
    J.W. Kim, D.H. Kim, D.Y. Oh, H. Lee, J.H. Kim, J.H. Lee, and Y.S. Jung, J. Power Sources 274, 1254 (2015).CrossRefGoogle Scholar
  28. 28.
    C. Ho, I.D. Raistrick, and R.A. Huggins, J. Electrochem. Soc. 127, 343 (1980).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations