Advertisement

JOM

pp 1–11 | Cite as

Review of Progress on Computational Modeling and Simulation of the Zinc Electrowinning Production Process

  • Zongliang ZhangEmail author
  • Michael L. Free
Computational Approaches for Energy Materials and Processes
  • 27 Downloads

Abstract

Zinc is an important energy material in the battery industry. Modeling and simulation are less expensive and more efficient ways to study and optimize the zinc electrowinning process. A critical review of research related to models and simulations of this process is presented herein, along with associated equations and methodologies. These equations or models are categorized into four different but closely related types: empirical equations for current efficiency prediction, equations for the related parameters in the electrowinning process, fundamental electrochemical models, and computational fluid dynamics (CFD) models. These equations or models are focused on certain aspects of the zinc electrowinning process and are applied under specific conditions. However, most of them are simplified, and many significant aspects of the zinc electrowinning process are ignored, limiting their accuracy. Promising future developments regarding modeling and simulation of the zinc electrowinning process are discussed.

Notes

Acknowledgement

The authors would like to acknowledge partial funding from Amira International.

References

  1. 1.
    M.K. Ghosh, R.P. Das, and A.K. Biswas, Int. J. Miner. Process. 66, 241 (2002).CrossRefGoogle Scholar
  2. 2.
    Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang, and Y. Xia, Angew. Chem. 130, 11911 (2018).CrossRefGoogle Scholar
  3. 3.
    L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, and C. Zhi, Adv. Energy Mater. 8, 1801090 (2018).CrossRefGoogle Scholar
  4. 4.
    M.S. Moats, S. Wang, D. Kim, and T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization. Hoboken, NJ, USA (2012).Google Scholar
  5. 5.
    B. Behnajady, A.A. Balesini, and J. Moghaddam, Can. Metall. Q. 53, 333 (2014).CrossRefGoogle Scholar
  6. 6.
    I.W. Wark, in Proceedings of the First Australian Conference on Electrochemistry, ed. by J.A. Friend and F. Gutman (Sydney and Hobart, Pergamon, London, 1963),p. 889.Google Scholar
  7. 7.
    G.C. Bratt, in The Aus. IMM Conference, (Tasmania, 1977), p. 277.Google Scholar
  8. 8.
    I.W. Wark, J. Appl. Electrochem. 9, 721 (1979).CrossRefGoogle Scholar
  9. 9.
    C.S. Castro, R. Gonzalez-Garcia, L. Alvarado, B. Ramos, R. Lara, and J. Bolaños, in Pb Zn 2010-Lead-Zinc 2010 Symposium, Held in Conjunction with COM 2010 (2010), p. 1191.Google Scholar
  10. 10.
    A.C. Scott, R.M. Pitblado, G.W. Barton, and A.R. Ault, J. Appl. Electrochem. 18, 120 (1988).CrossRefGoogle Scholar
  11. 11.
    I. Ivanov, Hydrometallurgy 72, 73 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Recéndiz, I. González, and J. L. Nava, Electrochim. Acta, 52 (2007).Google Scholar
  13. 13.
    D.J. Mackinnon, J.M. Brannen, and P.L. Fenn, J. Appl. Electrochem. 17, 1129 (1987).CrossRefGoogle Scholar
  14. 14.
    Y. Umetsu, Q. Su, and K. Tozawa, J. Min. Metall. Inst. Jpn. 104, 829 (1988).Google Scholar
  15. 15.
    E. Guerra and B. Massimiliano, J. Chem. Eng. Data 51, 1491 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Mahon, L. Wasik, and A. Alfantazi, J. Electrochem. Soc. 159, D486 (2012).CrossRefGoogle Scholar
  17. 17.
    I. Zouari and L. François, Electrochim. Acta 37, 439 (1992).CrossRefGoogle Scholar
  18. 18.
    K.J. Cathro, J. Electrochem. Soc. 139, 2186 (1992).CrossRefGoogle Scholar
  19. 19.
    Y. Awakura, D. Toshiya, and M. Hiroshi, Metall. Trans. B 19, 5 (1988).CrossRefGoogle Scholar
  20. 20.
    A.Y. Hosny, T.J. O’Keefe, J.W. Johnson, and W.J. James, J. Appl. Electrochem. 21, 785 (1991).CrossRefGoogle Scholar
  21. 21.
    H.M. Wang, S.F. Chen, T.J. O’keefe, M. Degrez, and R. Winand, J. Appl. Electrochem., 19 174 (1989).Google Scholar
  22. 22.
    G.W. Barton and A.C. Scott, J. Appl. Electrochem. 22, 104 (1992).CrossRefGoogle Scholar
  23. 23.
    L. Rayleigh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 34, 481 (1892).CrossRefGoogle Scholar
  24. 24.
    J.C. Maxwell, A treatise on electricity and magnetism, vol 1 (Clarendon, 1881).Google Scholar
  25. 25.
    G.H. Neale and W.K. Nader, AIChE J. 19, 112 (1973).CrossRefGoogle Scholar
  26. 26.
    E. Robert and C.W. Tobias, J. Electrochem. Soc. 106, 827 (1959).CrossRefGoogle Scholar
  27. 27.
    R.E. Meredith and C.W. Tobias, J. Electrochem. Soc. 108, 286 (1961).CrossRefGoogle Scholar
  28. 28.
    V.D. Bruggeman, Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
  29. 29.
    S. Prager, Physica 29, 129 (1963).MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Hammoudi, C. Henao, K. Agbossou, Y. Dubé, and M.L. Doumbia, Int. J. Hydrogen Energy 37, 13895 (2012).CrossRefGoogle Scholar
  31. 31.
    G. Kreysa and M. Kuhn, J. Appl. Electrochem. 15, 517 (1985).CrossRefGoogle Scholar
  32. 32.
    H. Vogt, Compr. Treatise Electrochem., Springer US, 445 (1983).Google Scholar
  33. 33.
    F. Hine and K. Murakami, J. Electrochem. Soc. 127, 292 (1980).CrossRefGoogle Scholar
  34. 34.
    P.J. Sides and C.W. Tobias, J. Electrochem. Soc. 129, 2715 (1982).CrossRefGoogle Scholar
  35. 35.
    L.J.J. Janssen and E. Barendrecht, Electrochim. Acta 28, 341 (1983).CrossRefGoogle Scholar
  36. 36.
    L.J.J. Janssen, J.J.M. Geraets, E. Barendrecht, and S.D.J. Van Stralen, Electrochim. Acta 27, 1207 (1982).CrossRefGoogle Scholar
  37. 37.
    O. Lanzi and F.S. Robert, J. Electrochem. Soc. 130, 799 (1983).CrossRefGoogle Scholar
  38. 38.
    M.L. Free, Hydrometallurgy: Fundamentals and Applications (Wiley, 2013), pp. 53–96.Google Scholar
  39. 39.
    H. Kita, J. Electrochem. Soc. 113, 1095 (1966).CrossRefGoogle Scholar
  40. 40.
    D. Pletcher and F.C. Walsh, Industrial Electrochemistry (New York: Chapman and Hall, 1982).Google Scholar
  41. 41.
    A.W. Bryson, Hydrometallurgy’81, Society of Chemical Industry Symposium, Manchester (1981).Google Scholar
  42. 42.
    R.E. White, M. Bain, and M. Raible, J. Electrochem. Soc. 130, 1037 (1983).CrossRefGoogle Scholar
  43. 43.
    M.J. Mader, C.W. Walton, and R.E. White, J. Electrochem. Soc. 133, 1124 (1986).CrossRefGoogle Scholar
  44. 44.
    A.C. Scott, R.M. Pitblado, and G.W. Barton, in Proceedings of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries, Metallurgy, vol 2 (1987).Google Scholar
  45. 45.
    G.W. Barton and A.C. Scott, J. Appl. Electrochem. 22, 687 (1992).CrossRefGoogle Scholar
  46. 46.
    G.W. Barton and A.C. Scott, J. Appl. Electrochem. 24, 377 (1994).CrossRefGoogle Scholar
  47. 47.
    J. Dukovic and W.T. Charles, J. Electrochem. Soc. 134, 331 (1987).CrossRefGoogle Scholar
  48. 48.
    K. Bouzek, K. Borve, O.A. Lorentsen, K. Osmundsen, I. Rousar, and J. Thonstad, J. Electrochem. Soc. 142, 64 (1995).CrossRefGoogle Scholar
  49. 49.
    G.H. Kelsall, E. Guerra, G. Li, and M. Bestetti, in Electrochemistry in Mineral and Metal Processing V: Proceedings of the International Symposium, vol. 2000, (The Electrochemical Society, 2000), p. 326.Google Scholar
  50. 50.
    M. Mahon, S. Peng, L. Wasik, and A. Alfantazi, in Electrometallurgy, ed. M. Free, M. Moats, G. Houlachi, E. Asselin, A. Allanore, J. Yurko, and S. Wang (The Minerals, Metals & Materials Society, 2012).Google Scholar
  51. 51.
    M. Mahon, S. Peng, and A. Alfantazi, Can. J. Chem. Eng. 92, 633 (2014).CrossRefGoogle Scholar
  52. 52.
    Y. Gong, W. Zhang, and Z. Xiong, CIESC J. 12, 019 (2013).Google Scholar
  53. 53.
    N.S. Choi, D.W. Kim, J. Cho, and D.H. Kim, J. Electr. Eng. Technol. 10, 641 (2015).CrossRefGoogle Scholar
  54. 54.
    J.W. Wang, Y.G. Luo, and Z. Shi, Nonferrous Met (Extr. Metall.) 8, 001 (2011).Google Scholar
  55. 55.
    H.L. Li, H.U. Jie, Z.H.O.U. Ping, W.W. Wei, and Y.B. Su, Trans. Nonferrous Met. Soc. China 24, 1604 (2014).CrossRefGoogle Scholar
  56. 56.
    Z. Zhang, J.M. Werner, and M.L. Free, J. Electrochem. Soc. 165, J3246 (2018).CrossRefGoogle Scholar
  57. 57.
    H. Wang, W. Xia, W. Yang, and B. Ren, in CFD Modeling and Simulation in Materials Processing 2016, (Springer, Cham, 2016), p. 239.Google Scholar
  58. 58.
    M.P. Schwarz, Miner. Eng. 30, 12 (2012).CrossRefGoogle Scholar
  59. 59.
    D. Ziegler and J.W. Evans, J. Electrochem. Soc. 133, 567 (1986).CrossRefGoogle Scholar
  60. 60.
    A. Filzwieser, K. Hein, G. Hanko, and H. Grogger, in Proceedings of Copper 99-Cobre 99 International Conference 4th, vol 99 (1999), p. 695.Google Scholar
  61. 61.
    M.J. Leahy and M.P. Schwarz, Metall. Mater. Trans. B 41, 1247 (2010).CrossRefGoogle Scholar
  62. 62.
    J.M. Werner, W. Zeng, M.L. Free, Z. Zhang, and J. Cho, J. Electrochem. Soc. 165, E190 (2018).CrossRefGoogle Scholar
  63. 63.
    Z. Zhang, J. Werner, and M. Free, TMS Annual Meeting & Exhibition (Cham: Springer, 2018), p. 111.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations