pp 1–18 | Cite as

Conceptual Design Framework for Setting Up Aluminum Alloy Powder Production System for Selective Laser Melting (SLM) Process

  • Gaamangwe Matsagopane
  • Eyitayo Olatunde OlakanmiEmail author
  • Annelize Botes
  • Said Kutua
Effective Production and Recycling of Powder Materials


Documentation on the correct process and component requirements for setting up efficient aluminum powder production systems capable of manufacturing powder that meets the requirements for the selective laser melting (SLM) process is not available due to its proprietary nature. This hinders powder metallurgy (PM) trainees in acquiring knowledge and skills needed in setting up such metal powder production systems. To address this challenge, powder requirements for the SLM process and powder production techniques for manufacturing powder that meets SLM requirements were identified and defined via literature review. User-value analysis and cost–benefit analysis techniques were applied as evaluation tools to identify the best components and process parameters for an aluminum powder production system. A conceptual design framework for setting up an aluminum powder gas atomizing system which meets SLM requirements is developed. This review improves the delivery of PM education in developing countries as trainees gain knowledge and skills for setting up powder production systems.



G.M. is very grateful to the Royal Academy of Engineering (Grand No. RAE/NUST/BULAWAYO/ZIMBABWE) for sponsorship of a 5-week internship at the Center for Scientific and Industrial Research (CSIR), Pretoria, South Africa.

Supplementary material

11837_2019_3431_MOESM1_ESM.pdf (501 kb)
Supplementary material 1 (PDF 500 kb)


  1. 1.
    M. Brandt, Laser Additive Manufacturing; Materials, Design, Technologies, and Applications (Cambridge: Woodhead, 2017), pp. 1–8.CrossRefGoogle Scholar
  2. 2.
    M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, and J. Van Humbeeck, J. Mater. Process. Technol. 238, 437 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Molitch-Hou, Additive Manufacturing Materials, Processes, Quantifications and Applications, ed. J. Zhang and Y.G. Jung (Oxford: Butterworth-Heinemann, 2018), pp. 160–165.Google Scholar
  4. 4.
    E.O. Olakanmi, J. Mater. Process. Technol. 213, 1387 (2013).CrossRefGoogle Scholar
  5. 5.
    ISO/ASTM52900-15, Standard Terminology for Additive Manufacturing—General Principles—Terminology (West Conshohocken, PA: ASTM International, 2015) retrieved from Accessed on 12 Sep 2018.
  6. 6.
    E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, Prog. Mater Sci. 74, 401 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Rao, S. Giet, K. Yang, X. Wu, and C.H.J. Davies, Mater. Des. 109, 334 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmannc, Phys. Procedia 12A, 271 (2011).CrossRefGoogle Scholar
  9. 9.
    V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, and R. Singh, A review on powder bed fusion technology of metal additive manufacturing, In: 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014 (Bangalore, Researchgate, 2014). Available at Accessed on 17 Sep 2018.
  10. 10.
    J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Mater. Process. Technol. 149, 616 (2004).CrossRefGoogle Scholar
  11. 11.
    L. Thijs, F. Verhaeghe, T. Craeghs, J. VanHumbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).CrossRefGoogle Scholar
  12. 12.
    J.J. Dunkley, Adv. Powder. Metall. Part. Mater. 2, 1 (1989).Google Scholar
  13. 13.
    A.J. Yule and J.J. Dunkley, Atomization of Melts, 1st ed. (New York: Oxford University Press, 1994), pp. 220–235.Google Scholar
  14. 14.
    G. Pahl, W. Beitz, J. Feldhusen, and K.H. Grote, Engineering Design: A Systematic Approach, 3rd ed. (London: Springer, 2007), pp. 125–143.CrossRefGoogle Scholar
  15. 15.
    M.T. Fernandes, Value analysis—going into a further dimension. Eng. Technol. Appl. Sci. Res. 5, 781–78914 (2015).Google Scholar
  16. 16.
    S. Özbilen, Addit. Manuf. 102, 109 (2013).Google Scholar
  17. 17.
    Y. Liu, H. Zhang, and Y. Li, Trans. Nonferrous Met. Soc. China 25, 1004 (2015).CrossRefGoogle Scholar
  18. 18.
    C. Li, K. Chang, A. Yeh, J. Yeh, and S. Lin, Int. J. Refract. Met. Hard Mater. 75, 225 (2018).CrossRefGoogle Scholar
  19. 19.
    C.M. Bao, U. Dahlborg, N. Adkins, and M. Calvo-Dahlborg, J. Alloys Compd. 481, 199 (2009).CrossRefGoogle Scholar
  20. 20.
    T. Duda and L.V. Raghavan, IFAC-Online Papers, vol. 1, 2016.Google Scholar
  21. 21.
    G. Antipas, Metals 2, 202 (2012).CrossRefGoogle Scholar
  22. 22.
    E.O. Olakanmi, K.W. Dalgarno, and R.F. Cochrane, Rapid Prototyp. J. 18, 109 (2012).CrossRefGoogle Scholar
  23. 23.
    J.K. Prescott and R.A. Barnum, On Powder Flowability, Pharmaceutical Technology, p. 60 (2000).Google Scholar
  24. 24.
    D. Dai and D. Gu, Mater. Des. 55, 482 (2014).CrossRefGoogle Scholar
  25. 25.
    J.F. Flumerfelt, Aluminum powder metallurgy processing. In: Retrospective Theses and Dissertations (1998). Retrieved from: Accessed on 15 Aug 2017.
  26. 26.
    H.J. Niu and I.T.H. Chang, Scr. Mater. 41, 25 (1999).CrossRefGoogle Scholar
  27. 27.
    E. Yasa and J.-P. Kruth, Procedia Eng. 19, 389 (2011).CrossRefGoogle Scholar
  28. 28.
    X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, J. Mater. Process. Technol. 222, 33 (2015).CrossRefGoogle Scholar
  29. 29.
    D.M. Bauer, K. Dietrich, M. Walter, P. Forêt, F. Palm, and G. Witt, Proceedings of the 27th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference (Texas, University of Texas, 2016) pp. 419–425. Available at URL: Accessed on 25 Sep 2018.
  30. 30.
    G.S. Upadhyaya, Powder Metallurgy Technology (Cambridge: Cambridge International Science, 2007).Google Scholar
  31. 31.
    J.J. Dunkley, Advances in Powder Metallurgy: Properties, Processing and Applications, 2nd ed., ed. I. Chang and Y. Zhao (London: Woodhead, 2013), pp. 3–17.CrossRefGoogle Scholar
  32. 32.
    L. Tian, I. Anderson, T. Riedemann, and A. Russell, Powder Technol. 308, 84 (2017).CrossRefGoogle Scholar
  33. 33.
    V. Tiwari, P.K. Jain, and P. Tandon, Adv. Eng. Inform. 30, 16 (2016).CrossRefGoogle Scholar
  34. 34.
    S.E. Tinashe, Dissertation, Conceptual Design of a Low Pressure Cold Gas Dynamic Spray (LPCGDS) System (Johannesburg: University of Witwaterand, 2010).Google Scholar
  35. 35.
    J.S. Thompson, O. Hassan, S. Rolland, and J. Sienz, Powder Technol. 291, 75 (2016).CrossRefGoogle Scholar
  36. 36.
    R.M. German and V. Vassileva, Injection Molding of Metals and Ceramics (Princeton: Metal Powder Industries Federation, 2007).Google Scholar
  37. 37.
    W. Zhao, F. Cao, Z. Ning, and J. Sun, Trans. Nonferrous Met. Soc. China 19, 485 (2009).CrossRefGoogle Scholar
  38. 38.
    B. Jenkins and P. Mullinger, Industrial and Process Furnaces; Principles, Design and Operation, 2nd ed. (Oxford: Butterworth-Heinemann, 2014), p. 5.Google Scholar
  39. 39.
    W. Duangkhamchan, F. Ronsse, F. Depypere, J.G. Pieters, and K. Dewettinck, Chem. Eng. Sci. 68, 555 (2012).CrossRefGoogle Scholar
  40. 40.
    A.M. Mullis, I.N. McCarthy, and R.F. Cochrane, J. Mater. Process. Technol. 211, 1471 (2011).CrossRefGoogle Scholar
  41. 41.
    V. Tesar, Chem. Eng. Process. 82, 19 (2014).CrossRefGoogle Scholar
  42. 42.
    O.D. Neikov, Handbook of Non-ferrous Metal Powders (Amsterdam: Elsevier, 2009), pp. 102–142.CrossRefGoogle Scholar
  43. 43.
    A. Allimant, M.P. Planche, Y. Bailly, I. Dembinski, and C. Coddet, Powder Technol. 190, 79 (2008).CrossRefGoogle Scholar
  44. 44.
    I.E. Anderson and R.L. Terpstra, Liquid Metal Atomization Fundamentals and Practice, Proceedings from a symposium held at the 2000 TMS Annual Meeting and Exhibition, ed. I.E. Anderson, K.P. Cooper, and F.S. Biancaniello, pp. 287–309 (2000).Google Scholar
  45. 45.
    A. Unal, Mater. Sci. Technol. 5, 1029 (1987).CrossRefGoogle Scholar
  46. 46.
    H. Pfeifer, Industrial furnaces—status and research challenges, In: INFUB11th European Conference on Industrial Furnaces and Boilers, Energy Procedia, vol. 120, pp. 28–40 (2017).Google Scholar
  47. 47.
    J.T. Strauss and S.A. Miller, Advances in Powder Metallurgy & Particulate Materials, World congress, Powder Metallurgy and Particulate Materials (Princeton: APMI International, 1996), pp. 1–66.Google Scholar
  48. 48.
    Bureau of Energy Efficiency, retrieved from: Accessed on 17 Dec 2017.
  49. 49.
    F.C. Campbell, Metals Fabrication: Understanding the Basics (Novelty: ASM International, 2013), pp. 63–65.Google Scholar
  50. 50.
    K.C. Bala, AU J. Technol. 9, 83 (2005).MathSciNetGoogle Scholar
  51. 51.
    U.P. Anaidhuno and C.O. Mgbemena, Am. J. Eng. Res. 4, 29 (2015).Google Scholar
  52. 52.
    D.K. Biswas, S.R. Asthana, and V.G. Rau, Appl. Therm. Eng. 21, 359 (2001).CrossRefGoogle Scholar
  53. 53.
    L. Zimmermann, G. Avice, P.H. Blard, B. Marty, E. Furi, and P.G. Burnard, Chem. Geol. 480, 86 (2018).CrossRefGoogle Scholar
  54. 54.
    L. Hocine, D. Yacine, B. Kamel, and K.M. Samira, Energy 34, 1207 (2009).CrossRefGoogle Scholar
  55. 55.
    P.D. Webster, Fundamentals of Foundry Technology, 1st ed. (London: Portcullis, 1980), pp. 19–33.Google Scholar
  56. 56.
    S. Shyamal and C.L.E. Swartz, IFAC-Papers On-Line 49, 1175 (2016).CrossRefGoogle Scholar
  57. 57.
    E. Khodabandeh, M. Ghaderi, A. Afzalabadi, A. Rouboa, and A. Salarifard, Appl. Therm. Eng. 123, 1190 (2017).CrossRefGoogle Scholar
  58. 58.
    J. Madias, Electric furnace steelmaking.Treatise on Process Metallurgy, ed. S. Seetharaman (New York: Elsevier, 2013), pp. 271–299.Google Scholar
  59. 59.
    D.R. Guildenbecher, C. López-Rivera, and P.E. Sojka, Exp. Fluids 46, 371 (2009).CrossRefGoogle Scholar
  60. 60.
    G. Krauss, White Paper, The Physical Metallurgy of Steel and the 2015 Publication of STEELS: Processing, Structure, and Performance, 2nd ed. (Materials Park: ASM International, 2015).Google Scholar
  61. 61.
    R. Singh, D. Sachan, R. Verma, C. Goel, R. Jayaganthand, and R. Kumar, Mater. Today 5, 16880 (2018).CrossRefGoogle Scholar
  62. 62.
    L.F. Francis, Materials Processing, ed. L.F. Francis, B.J.H. Stadler, and C.C. Roberts (Oxford: Academic c/o Elsevier, 2016), pp. 343–414.CrossRefGoogle Scholar
  63. 63.
    J.J. Dunkley, Met. Powder Rep. 45, 120 (1990).CrossRefGoogle Scholar
  64. 64.
    C.K. Chua, C.H. Wong, and W.Y. Yeong, Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing (London: Academic c/o Elsiver, 2017), pp. 95–137.CrossRefGoogle Scholar
  65. 65.
    S. Angus, K.M. Reuck, and R.D. McCarty, Helium International Thermodynamic Tables of the Fluid State-4 (Oxford: Pergamon, 1975), p. 48.Google Scholar
  66. 66.
    C. Mai, Sci. J. 37, 55 (2010).Google Scholar
  67. 67.
    N. Borale and A. Kumar, Lecture Notes. Powder Metallurgy: Atomisation Process (2016), retrieved from ( Accessed on 17 Aug 2017.
  68. 68.
    S. Macmillan, J. Steele, S. Austin, P. Kirby, and R. Spence, Des. Stud. 22, 169 (2001).CrossRefGoogle Scholar
  69. 69.
    Wikipedia, retrieved from Accessed on 24 Oct 2017.
  70. 70.
  71. 71.
    U. Fritsching and V. Uhlenwinkel (eds.) K. Kondoh, Powder Metallurgy, Chap. 5 (London, UK. InTech publishing, 2012), pp. 99–122. © 2012 Fritsching U, Uhlenwinkel V. under CC BY 3.0 license. Retrieved from Accessed on 12 Dec 2018.
  72. 72.
    S. Kapoor, Nozzles, Aviation (2012), retrieved from Accessed on 13 Dec 2018.
  73. 73., On-line Physics tutors. Retrieved from: Accessed on 17 Jan 2019.
  74. 74.
  75. 75.
    K. El-Akruti, T. Zhang, and R. Dwight, Int. J. Prod. Res. 54, 5946 (2016).CrossRefGoogle Scholar
  76. 76.
    C.R. Rejeesh, Powder Metallurgy,In: Production Engineering, Lecture Notes (Mahatma Gandhi University, 2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical, Energy and Industrial EngineeringBotswana International University of Science and TechnologyPalapyeBotswana
  2. 2.Materials Science and Manufacturing Research GroupCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa

Personalised recommendations