Advertisement

JOM

pp 1–9 | Cite as

Influence of Carbon Content on Aluminothermic Reduction of Ilmenite During Hot Pressing

  • Shengming LiuEmail author
  • Min Chen
  • Xuan Xiao
Effective Production and Recycling of Powder Materials
  • 10 Downloads

Abstract

Al2O3-TiCN-Fe composites were successfully prepared by hot pressing using natural ilmenite, aluminum, and carbon. The process of aluminothermic reduction of ilmenite and the influence of carbon on the phase evolution, synthetic products, microstructure, and properties were investigated using x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and mechanical analysis. The XRD results showed that the reduction process of the FeTiO3-2Al system was a gradual deoxygenation process. In the FeTiO3-2Al-xC systems, carbon participates in the reduction reaction to form TiN, which gradually transforms to TiCN. The carbon content had a great influence on the presence of titanium oxides during the reaction. In addition, the grain size of Al2O3, TiCN, and Fe phases became smaller as the carbon content was increased. When the carbon content was 0.88 mol, the synthesized products achieved comprehensive mechanical properties, i.e., bending strength and Vickers hardness of 375 MPa and 15.5 GPa, respectively.

Notes

Acknowledgements

The authors acknowledge financial support from The Ministry of Education “Chunhui Plan” Cooperative Research Project (16201417), the Key Research Project of Xihua University (Z1520102), Xihua University Key Laboratory Open Fund Project (SZJJ2014-061), and Scientific Research Project in Sichuan Province Department of Education (15201444).

References

  1. 1.
    K.H. Wu, G.H. Zhang, and H.P. Gou, Vacuum 151, 51 (2018).CrossRefGoogle Scholar
  2. 2.
    E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin, and S.A. Rezan, Int. J. Min. Met. Mater. 24, 444 (2017).CrossRefGoogle Scholar
  3. 3.
    R. Khoshhal, M. Soltanieh, and M.A. Boutorabi, J. Alloys Compd. 628, 113 (2015).CrossRefGoogle Scholar
  4. 4.
    N.J. Welham, J. Alloys Compd. 274, 303 (1998).CrossRefGoogle Scholar
  5. 5.
    R. Khoshhal, M. Soltanieh, and M.A. Boutorabi, Int. J. Refract. Met. Hard Mater. 45, 53 (2014).CrossRefGoogle Scholar
  6. 6.
    A.T. Tang, S.M. Liu, and F.S. Pan, Prog. Nat. Sci. 23, 501 (2013).CrossRefGoogle Scholar
  7. 7.
    N.J. Welham, T. Kerr, and P.E. Willis, J. Am. Ceram. Soc. 82, 2332 (1999).CrossRefGoogle Scholar
  8. 8.
    Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, and J. Wang, Ceram. Int. 39, 8877 (2013).CrossRefGoogle Scholar
  9. 9.
    Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, and J. Wang, Mater. Sci. Eng. A 577, 9 (2013).CrossRefGoogle Scholar
  10. 10.
    M. Razavi, A.H. Rajabi-Zamani, M.R. Rahimipour, R. Kaboli, M.O. Shabani, and R. Yazdani-Rad, Ceram. Int. 37, 443–449 (2011).CrossRefGoogle Scholar
  11. 11.
    J. Pourhosseini, M. Zakeri, M.R. Rahimipour, E. Salahi, and GhR Pourhosseini, Mater. Sci. Technol. Lond. 26, 1132 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Kholghy, S. Kharatyan, and H. Edris, J. Alloys Compd. 502, 491 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Nukami and M.C. Flemings, Metall. Mater. Trans. A 26, 1877 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Soda, Q. Xia, A. McLean, A.K. Pramanick, and G. Motoyasu, Mater. Sci. Eng. A 216, 61 (1996).CrossRefGoogle Scholar
  15. 15.
    B.S.S. Daniel, V.S.R. Murthy, and G.S. Murty, J. Mater. Sci. Technol. 68, 132 (1997).CrossRefGoogle Scholar
  16. 16.
    P.E. Willis, N.J. Welham, and A. Kerr, J. Eur. Ceram. Soc. 18, 701 (1998).CrossRefGoogle Scholar
  17. 17.
    M. Razavi, M.R. Rahimipour, T. Ebadzadeh, and S.S.R. Tousi, Bull. Mater. Sci. 32, 155 (2009).CrossRefGoogle Scholar
  18. 18.
    Z.G. Zou, C.Q. Yin, Y. Wu, and X.M. Li, Key Eng. Mater. 280–283, 1501 (2007).CrossRefGoogle Scholar
  19. 19.
    Z.G. Zou, Y. Wu, C.Q. Yin, and X.M. Li, J. Wuhan Univ. Technol. Mater. Sci. Ed. 22, 706 (2007).CrossRefGoogle Scholar
  20. 20.
    Z.G. Zou, J.L. Li, and Y. Wu, Key Eng. Mater. 280–283, 1103 (2005).Google Scholar
  21. 21.
    S. Alamolhoda, S. Heshmati-Manesh, and A. Ataie, Adv. Powder Technol. 23, 343 (2012).CrossRefGoogle Scholar
  22. 22.
    Y.F. Shen, Z.G. Zou, Z.G. Xiao, K. Liu, F. Long, and Y. Wu, Mater. Sci. Eng. A 528, 2100 (2011).CrossRefGoogle Scholar
  23. 23.
    V.P. Kobyakov, N.V. Sachkova, and M.A. Sichinava, Inorg. Mater. 46, 1396 (2010).CrossRefGoogle Scholar
  24. 24.
    J.J.S. Dilip, B.S.B. Reddy, S. Das, and K. Das, J. Alloys Compd. 475, 178 (2009).CrossRefGoogle Scholar
  25. 25.
    R.W. Richards, R.D. Jones, P.D. Clements, and H. Clarke, Int. Mater. Rev. 39, 191 (1994).CrossRefGoogle Scholar
  26. 26.
    R. Khoshhal, M. Soltanieh, and M.A. Boutorabi, Int. J. Refract. Met. Hard Mater. 52, 17 (2015).CrossRefGoogle Scholar
  27. 27.
    D.P. Xiang, Y. Liu, M.J. Tu, Y.Y. Li, and W.P. Chen, Int. J. Refract. Met. Hard Mater. 27, 111 (2009).CrossRefGoogle Scholar
  28. 28.
    H. Kwon and S. Kang, J. Am. Ceram. Soc. 92, 272 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Jha and S.J. Yoon, J. Mater. Sci. 34, 307 (1999).CrossRefGoogle Scholar
  30. 30.
    L.M. Berger, J. Hard Mater. 3, 3 (1992).Google Scholar
  31. 31.
    L.M. Berger, J. Mater. Sci. Lett. 20, 1845 (2001).CrossRefGoogle Scholar
  32. 32.
    N.J. Welham and J.S. Williams, Metall. Mater. Trans. B 30, 1075 (1999).CrossRefGoogle Scholar
  33. 33.
    W.Y. Li and F.L. Riley, J. Eur. Ceram. Soc. 8, 345 (1991).CrossRefGoogle Scholar
  34. 34.
    R.M. Ren, Z.G. Yang, and L.L. Shaw, Mater. Sci. Eng. A 286, 65 (2000).CrossRefGoogle Scholar
  35. 35.
    H.P. Gou, G.H. Zhang, and K.C. Chou, Metall. Mater. Trans. B 46B, 48 (2015).CrossRefGoogle Scholar
  36. 36.
    S.A. Rezan, G. Zhang, and O. Ostrovski, ISIJ Int. 52, 363 (2012).CrossRefGoogle Scholar
  37. 37.
    H.P. Gou, G.H. Zhang, X. Yuan, and K.C. Chou, ISIJ Int. 56, 744 (2016).CrossRefGoogle Scholar
  38. 38.
    G. Neumann, R. Kieffer, and P. Ettmayer, Monatsh. Chem. 103, 1130 (1972).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringXihua UniversityChengduChina
  2. 2.College of Titanium and VanadiumPanzhihua UniversityPanzhihuaChina

Personalised recommendations