Advertisement

JOM

pp 1–11 | Cite as

Highly Ordered Good Crystalline ZnO-Doped WO3 Thin Films Suitable for Optoelectronic Applications

  • V. S. Kavitha
  • R. Jolly Bose
  • R. Sreeja Sreedharan
  • C. Sudarsanakumar
  • Radhakrishna Prabhu
  • V. P. Mahadevan PillaiEmail author
Technical Article
  • 33 Downloads

Abstract

Highly ordered ZnO-doped WO3 thin films with good crystalline quality are prepared using radio frequency magnetron sputtering technique, and its morphological and structural properties are studied using various characterization tools such as field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction technique, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. Morphological analysis shows a smooth surface for pure film, whereas the ZnO-doped films presents a dense distribution of grains of larger sizes with well-defined grain boundary. X-ray diffraction studies reveal the enhancement of crystalline quality of the films with increase in ZnO doping concentration up to 5 wt.%, beyond which the crystalline quality gets deteriorated. A phase modification from a single monoclinic WO3 phase to mixed monoclinic WO3 and W18O49 phases is observed for films with higher ZnO doping concentrations.

Notes

Conflict of interest

The authors declares that they have no conflict of interest.

References

  1. 1.
    R. Sivakumar, A. Moses Ezhil Raj, B. Subramanian, M. Jayachandran, D.C. Trivedi, and C. Sanjeeviraja, Mater. Res. Bull. 39, 1479 (2004).CrossRefGoogle Scholar
  2. 2.
    C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, and U. Becker, J. Phys. Chem. B 110, 10430 (2006).CrossRefGoogle Scholar
  3. 3.
    T. Pauporte, M.C. Bernard, Y. Soldo-Olivier, and R. Faure, J. Electrochem. Soc. 151, 21 (2004).CrossRefGoogle Scholar
  4. 4.
    M. SasaniGhamsari, S. Radiman, M. Azmi Abdul Hamid, S. Mahshid, and Sh. Rahmani, Mater. Lett. 92, 287 (2013).CrossRefGoogle Scholar
  5. 5.
    Y.M. Hunge, M.A. Mahadik, S.S. Kumbhar, V.S. Mohite, K.Y. Rajpure, N.G. Deshpande, A.V. Moholkar, and C.H. Bhosale, Ceram. Int. 42, 789 (2016).CrossRefGoogle Scholar
  6. 6.
    R. Jolly Bose, N. Illyasukutty, K.S. Tan, R.S. Rawat, M. Vadakke Matham, H. Kohler, and V.P. Mahadevan Pillai, Appl. Surf. Sci. 440, 320 (2018).CrossRefGoogle Scholar
  7. 7.
    A. Rougier, F. Portemer, A. Quede, and M. El Marssi, Appl. Surf. Sci. 153, 1 (1999).CrossRefGoogle Scholar
  8. 8.
    A. Al-Mohammad, Phys. Stat. Sol. (A) 205, 2880 (2008).CrossRefGoogle Scholar
  9. 9.
    P. TaÈgtstroÈm and U. Jansson, Thin Solid Films 352, 107 (1999).CrossRefGoogle Scholar
  10. 10.
    R. Jolly Bose, V.S. Kavitha, C. Sudarsanakumar, and V.P. Mahadevan Pillai, Appl. Surf. Sci. 379, 505 (2016).CrossRefGoogle Scholar
  11. 11.
    J. Su, X. Feng, J.D. Sloppy, L. Guo, and C.A. Grimes, Nano Lett. 11, 203 (2011).CrossRefGoogle Scholar
  12. 12.
    S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, and C. Lee, J. Alloys Compd. 719, 71 (2017).CrossRefGoogle Scholar
  13. 13.
    B. Simona and P.V. Ashrit, Solid State Ionics 158, 187 (2003).CrossRefGoogle Scholar
  14. 14.
    Z. Jiao, J. Wang, L. Ke, X. Wei Sun, and H. Volkan Demir, ACS Appl. Mater. Interfaces. 3, 229 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Liu, Y. Lin, L.-Y. Chou, S.W. Sheehan, W. He, F. Zhang, H.J.M. Hou, and D. Wang, Angew. Chem. Int. Ed. 50, 499 (2011).CrossRefGoogle Scholar
  16. 16.
    K.J. Lethy, D. Beena, V.P. Mahadevan Pillai, and K.A. Suresh, J. Nanosci. Nanotechnol. 9, 5335 (2009).CrossRefGoogle Scholar
  17. 17.
    K.J. Lethy, D. Beena, R. Vinodkumar, V.P. Mahadevanpillai, V. Ganesan, V. Sathe, and D.M. Phase, Appl. Phys. A 91, 637 (2008).CrossRefGoogle Scholar
  18. 18.
    S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, and V.P. Mahadevan Pillai, J. Lumin. 132, 944 (2012).CrossRefGoogle Scholar
  19. 19.
    J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39, 125 (1967).CrossRefGoogle Scholar
  20. 20.
    O. Stenzel and M. Ohlidal, Optical Characterization of Thin Solid Films (Switzerland: Springer International, 2018), p. 24.CrossRefGoogle Scholar
  21. 21.
    R. Jolly Bose, R. Vinod Kumar, S.K. Sudheer, V.R. Reddy, V. Ganesan, and V.P. Mahadevan Pillai, J. Appl. Phys. 112, 114311 (2012).CrossRefGoogle Scholar
  22. 22.
    G. Li, X. Zhu, X. Tang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, and S. Dai, J. Alloys Compd. 509, 4816 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Van der Drift, Philips Res. Rep. 22, 267 (1967).Google Scholar
  24. 24.
    M. Öztas and M. Bedir, Thin Solid Films 516, 1703 (2008).CrossRefGoogle Scholar
  25. 25.
    L. El Mir, Z. Ben Ayadi, M. Saadoun, K. Djessas, H.J. von Bardeleben, and S. Alaya, Appl. Surf. Sci. 254, 570 (2007).CrossRefGoogle Scholar
  26. 26.
    S.R. Chalana and V.P. Mahadevan Pillai, Appl. Surf. Sci. 440, 1181 (2018).CrossRefGoogle Scholar
  27. 27.
    B.D. Cullity, Elements of X-ray Diffraction (Boston, MA: Addison-Wesley, 1956), p. 99.Google Scholar
  28. 28.
    R.W. Kelsall, I.W. Hamley, and M. Geoghegan, Nanoscale Science and Technology (New York: Wiley, 2006), p. 265.Google Scholar
  29. 29.
    S.K. Neogi, S. Chattopadhyay, A. Banerjee, S. Bandyopadhyay, A. Sarkar, and R. Kumar, J. Phys. Condens. Matter 23, 205801 (2011).CrossRefGoogle Scholar
  30. 30.
    P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).CrossRefGoogle Scholar
  31. 31.
    G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  32. 32.
    S.B. Qadri, J.P. Yang, E.F. Skelton, and B.R. Ratna, Appl. Phys. Lett. 70, 1020 (1997).CrossRefGoogle Scholar
  33. 33.
    X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang, and C.N. Cao, Chemosphere 68, 1976 (2007).CrossRefGoogle Scholar
  34. 34.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  35. 35.
    B. Panigrahy, M. Aslam, and D. Bahadur, J. Phys. Chem. C 114, 11758 (2010).CrossRefGoogle Scholar
  36. 36.
    N. Illyaskutty, S. Sreedhar, H. Kohler, R. Philip, V. Kumar Rajan, and V.P. Mahadevan Pillai, J. Phys. Chem. C 117, 7818 (2013).CrossRefGoogle Scholar
  37. 37.
    R. Sreeja Sreedharan, R. Reshmi Krishnan, R. Jolly Bose, V.S. Kavitha, S. Suresh, R. Vinodkumar, S.K. Sudheer, and V.P. Mahadevan Pillai, J. Lumin. 184, 273 (2017).CrossRefGoogle Scholar
  38. 38.
    T.B. Hur, Y.H. Hwang, H.K. Kim, and I.J. Lee, J. Appl. Phys. 99, 064308 (2006).CrossRefGoogle Scholar
  39. 39.
    G. Li and Z. Jian-Min, Chin. Phys. B 18, 4536 (2009).CrossRefGoogle Scholar
  40. 40.
    E. Salje, Acta Cryst. A 31, 360 (1975).CrossRefGoogle Scholar
  41. 41.
    V. Yakabanov and V.F. Chuvaev, Russ. J. Phys. Chem. 38, 717 (1964).Google Scholar
  42. 42.
    I.R. Beattie and T.R. Gilson, J. Chem. Soc. (A) 2322 (1969).Google Scholar
  43. 43.
    J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, Adv. Condens. Matter Phys. 2013, 1 (2013).CrossRefGoogle Scholar
  44. 44.
    O. Pyper, A. Kaschner, and C. Thomsen, Sol. Energy Mater. Sol. Cells 71, 511 (2002).CrossRefGoogle Scholar
  45. 45.
    M. Breedon, P. Spizzirri, M. Taylor, J. Plessis, D. McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski, and K. Kalantar-Zadeh, Cryst. Growth Des. 10, 430 (2010).CrossRefGoogle Scholar
  46. 46.
    G. Fang, Z. Liu, and K.L. Yao, J. Phys. D Appl. Phys. 34, 2260 (2001).CrossRefGoogle Scholar
  47. 47.
    K.J. Lethy, D. Beena, V.P. Mahadevan Pillai, and V. Ganesan, J. Appl. Phys. 104, 033515 (2008).CrossRefGoogle Scholar
  48. 48.
    N. Naseri, R. Azimirad, O. Akhavan, and A.Z. Moshfegh, Thin Solid Films 518, 2250 (2010).CrossRefGoogle Scholar
  49. 49.
    M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, and H.J. Gao, Appl. Phys. Lett. 86, 141901 (2005).CrossRefGoogle Scholar
  50. 50.
    W.-J. Li and Z.-W. Fu, Appl. Surf. Sci. 256, 2447 (2010).CrossRefGoogle Scholar
  51. 51.
    C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, Langmuir 27, 12172 (2011).CrossRefGoogle Scholar
  52. 52.
    B.A. De Angelis and M. Schiavello, J. Solid State Chem. 21, 67 (1977).CrossRefGoogle Scholar
  53. 53.
    Y. Yu, J. Wang, W. Li, W. Zheng, and Y. Cao, Cryst. Eng. Commun. 17, 5074 (2015).CrossRefGoogle Scholar
  54. 54.
    S.-K. Jeong, M.-H. Kim, S.-Y. Lee, H. Seo, and D.-K. Choi, Nanoscale Res. Lett. 9, 1 (2014).CrossRefGoogle Scholar
  55. 55.
    N. Hidayatul Nazirah Kamarudin, A. Abdul Jalil, S. Triwahyono, R.R. Muktic, M. ArifAb Aziz, H. Dina Setiabudi, M. Nazlan Mohd Muhid, and H. Hamdan, Appl. Catal. A 431–432, 104 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • V. S. Kavitha
    • 1
  • R. Jolly Bose
    • 1
  • R. Sreeja Sreedharan
    • 1
  • C. Sudarsanakumar
    • 2
  • Radhakrishna Prabhu
    • 3
  • V. P. Mahadevan Pillai
    • 1
    Email author
  1. 1.Department of OptoelectronicsUniversity of KeralaKariavattom, ThiruvananthapuramIndia
  2. 2.School of Pure and Applied PhysicsMahatma Gandhi UniversityPriyadarsini Hills, KottayamIndia
  3. 3.School of EngineeringRobert Gordon UniversityAberdeenUK

Personalised recommendations