pp 1–7 | Cite as

Matte Entrainment by SO2 Bubbles in Copper Smelting Slag

  • Xiangfeng Cheng
  • Zhixiang Cui
  • Leonel Contreras
  • Mao ChenEmail author
  • Anh Nguyen
  • Baojun Zhao
Technical Article


The attachment of copper matte by bubbles in slags, during the copper smelting process, plays a key role in the copper loss. This paper aims to provide an in-depth insight into the copper matte entrainment by bubbles in the copper production. The bubble size distribution and matte film thickness as well as the bubble detachment height were considered based on industrial and laboratory slag samples. The results indicated that most SO2 micro-bubbles in both slag samples were below 650 µm, which could penetrate the interface and thus transport matte into the slag phase. The matte film thickness surrounding the micro-bubbles tended to be less than 30 µm and became thinner with increasing bubble size. Furthermore, micro-bubbles larger than 350 µm could theoretically rise by 0.5 m in the slag phase even with the drag force of the matte droplets.



The authors would like to thank National Copper Corporation of Chile (Codelco), Dongying Fangyuan Nonferrous Metals (Fangyuan) and Australia Research Council for financial support through the ARC Linkage program. The authors also would like to thank China Scholarship Council (CSC) and The University of Queensland to provide Xiangfeng Cheng scholarship.


  1. 1.
    B. Zhao, Z. Cui, and Z. Wang, 4th International Symposium on High-Temperature Metallurgical Processing (2013), p. 3.Google Scholar
  2. 2.
    D. Poggi, R. Minto, and W.G. Davenport, JOM 21, 40 (1969).CrossRefGoogle Scholar
  3. 3.
    M. Chen, L. Contreras, and B. Zhao, Copper 2016, 976 (2016).Google Scholar
  4. 4.
    X. Cheng, Z. Cui, L. Contreras, M. Chen, N. Anh, and B. Zhao (eds.), 8th International Symposium on High-Temperature Metallurgical Processing (2017).
  5. 5.
    N. Cardona, L. Hermandez, E. Araneda, and R. Parra, Evaluation of copper losses in the slag cleaning circuits from two Chilean smelters, in Proceedings of Conference on Copper, June 2010, pp. 2637–2654.Google Scholar
  6. 6.
    I.K. Suh, Y. Waseda, and A. Yazawa, High Temp. Mater. Process. (Lond.) 8, 65 (1988).Google Scholar
  7. 7.
    M. Schlesinger, M. King, K. Sole, and W. Davenport, Extractive Metallurgy of Copper (Oxford: Elsevier, 2011), p. 191.CrossRefGoogle Scholar
  8. 8.
    R. Minto and W.G. Davenport, Can. Min. Metall. Bull. 65, 36 (1972).Google Scholar
  9. 9.
    G.A. Greene, J.C. Chen, and M.T. Conlin, Int. J. Heat Mass Transf. 31, 1309 (1988).CrossRefGoogle Scholar
  10. 10.
    S.W. Ip and J.M. Toguri, Metall. Mater. Trans. B 23, 303 (1992).CrossRefGoogle Scholar
  11. 11.
    M. Tanno, J. Liu, X. Gao, S.J. Kim, S. Ueda, and S. Kitamura, Metall. Mater. Trans. B 48, 2913 (2017).CrossRefGoogle Scholar
  12. 12.
    R. Bonhomme, J. Magnaudet, F. Duval, and B. Piar, J. Fluid Mech. 707, 405 (2012).CrossRefGoogle Scholar
  13. 13.
    K.K. Singh and H.-J. Bart, Ind. Eng. Chem. Res. 54, 9478 (2015).CrossRefGoogle Scholar
  14. 14.
    N. Dietrich, S. Poncin, S. Pheulpin, and H. Li, AIChE J. 54, 594 (2008).CrossRefGoogle Scholar
  15. 15.
    J.L. Mercier, F.M. Cunha, J.C. Teixeira, and M.P. Scofield, J. Appl. Mech. 41, 29 (1974).CrossRefGoogle Scholar
  16. 16.
    G.A. Greene, J.C. Chen, and M.T. Conlin, Int. J. Heat Mass Transf. 34, 149 (1991).CrossRefGoogle Scholar
  17. 17.
    G. Reiter and K. Schwerdtfeger, ISIJ Int. 32, 50 (1992).CrossRefGoogle Scholar
  18. 18.
    M. Kemiha, E. Olmos, W. Fei, S. Poncin, and H.Z. Li, Ind. Eng. Chem. Res. 46, 6099 (2007).CrossRefGoogle Scholar
  19. 19.
    Y.H. Mori, K. Komotori, K. Higeta, and J. Inada, Can. J. Chem. Eng. 55, 9 (1977).CrossRefGoogle Scholar
  20. 20.
    T.S. Emery, P.A. Raghupathi, and S.G. Kandlikar, Langmuir 34, 6766 (2018).CrossRefGoogle Scholar
  21. 21.
    A.V. Nguyen, H.J. Schulze, H. Stechemesser, and G. Zobel, Int. J. Miner. Process. 50, 97 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xiangfeng Cheng
    • 1
  • Zhixiang Cui
    • 2
  • Leonel Contreras
    • 3
  • Mao Chen
    • 1
    Email author
  • Anh Nguyen
    • 1
  • Baojun Zhao
    • 1
  1. 1.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Dongying Fangyuan Nonferrous Metals Co. LtdDongyingChina
  3. 3.National Copper Corporation of ChileSantiagoChile

Personalised recommendations