Advertisement

JOM

pp 1–7 | Cite as

Engineering Heterogeneous Multiphase Microstructure by Austenite Reverted Transformation Coupled with Ferrite Transformation

  • L. Liu
  • B. B. He
  • M. X. HuangEmail author
Advanced High-Strength Steels for Automobiles

Abstract

A heterogeneous multiphase medium Mn steel (Fe-10Mn-0.47C-2Al-0.7V, wt.%) consisting of prior austenite, martensite, reverted austenite, and ferrite is, for the first time, realized by both austenite reverted transformation and ferrite transformation. The phase fraction, kinetics, mechanisms, and microstructure evolution during the transformation sequence are systematically investigated. The heterogeneous multiphase medium Mn steel has great potential for high strain hardening by a continuous transformation-induced plasticity effect, grain-size gradient, and stress–strain partitioning. The present work provides a new pathway to design a heterogeneous multiphase microstructure in medium Mn steel.

Notes

Acknowledgements

M.X. Huang acknowledges financial support from the National Natural Science Foundation of China (U1764252, U1560204), Research Grants Council of Hong Kong (17255016, 17203014), and Seed Fund for Basic Research of HKU (201711159029, 201611159178).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    B.B. He, B. Hu, H.W. Yen, G. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, Science 357, 1029 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, and A. Hirata, Nature 544, 460 (2017).CrossRefGoogle Scholar
  3. 3.
    Y.K. Lee and J. Han, Mater. Sci. Technol. 31, 843 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. Ma, Mater. Sci. Technol. 33, 1713 (2017).CrossRefGoogle Scholar
  5. 5.
    D.-W. Suh and S.-J. Kim, Scr. Mater. 126, 63 (2017).CrossRefGoogle Scholar
  6. 6.
    B.B. He, H.W. Luo, and M.X. Huang, Int. J. Plast 78, 173 (2016).CrossRefGoogle Scholar
  7. 7.
    E.J. Seo, L. Cho, and B.C. De Cooman, Metall. Mater. Trans. A 46, 27 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Liu, B.B. He, and M.X. Huang, Adv. Eng. Mater. 20, 1 (2018).Google Scholar
  9. 9.
    F. Abu-Farha, X. Hu, X. Sun, Y. Ren, L.G. Hector, G. Thomas, and T.W. Brown, Metall. Mater. Trans. A 49, 87 (2018).CrossRefGoogle Scholar
  10. 10.
    J. Hu, L.-X. Du, G.-S. Sun, H. Xie, and R.D.K. Misra, Scr. Mater. 104, 87 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, Acta Mater. 78, 369 (2014).CrossRefGoogle Scholar
  12. 12.
    R. Alturk, L.G. Hector, C.M. Enloe, F. Abu-Farha, and T.W. Brown, JOM 70, 894 (2018).CrossRefGoogle Scholar
  13. 13.
    W. Wu, Y.-W. Wang, P. Makrygiannis, F. Zhu, G.A. Thomas, L.G. Hector, X. Hu, X. Sun, and Y. Ren, Mater. Sci. Eng., A 711, 611 (2018).CrossRefGoogle Scholar
  14. 14.
    X. Wu and Y. Zhu, Mater. Res. Lett. 5, 527 (2017).CrossRefGoogle Scholar
  15. 15.
    X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 111, 7179 (2014).Google Scholar
  16. 16.
    K. Lu, Science 345, 1455 (2014).CrossRefGoogle Scholar
  17. 17.
    C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, Acta Mater. 81, 386 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, and B. Hwang, Acta Mater. 122, 199 (2017).CrossRefGoogle Scholar
  19. 19.
    S.C. Hong and K.S. Lee, Mater. Sci. Eng., A 323, 148 (2002).CrossRefGoogle Scholar
  20. 20.
    H. Dong and X. Sun, Curr. Opin. Solid State Mater. Sci. 9, 269 (2005).CrossRefGoogle Scholar
  21. 21.
    Z. Yang and R. Wang, ISIJ Int. 43, 761 (2003).CrossRefGoogle Scholar
  22. 22.
    N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, Acta Mater. 65, 251 (2014).CrossRefGoogle Scholar
  23. 23.
    I. Tamura, H. Sekine, and T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels, 1st ed. (London: Butterworth-Heinemann, 1988), pp. 186–188.Google Scholar
  24. 24.
    Y. Matsumura and H. Yada, Trans. Iron Steel Inst. Jpn. 27, 492 (1987).CrossRefGoogle Scholar
  25. 25.
    J.-K. Choi, D.-H. Seo, J.-S. Lee, K.-K. Um, and W.-Y. Choo, ISIJ Int. 43, 746 (2003).CrossRefGoogle Scholar
  26. 26.
    Y. Liu, F. Sommer, and E. Mittemeijer, Acta Mater. 51, 507 (2003).CrossRefGoogle Scholar
  27. 27.
    H. Bhadeshia and R. Honeycomb, Steels: Microstructure and Properties, 3rd ed. (London: Edward Arnold Butterworth Heinemann, 2006), pp. 1–20.CrossRefGoogle Scholar
  28. 28.
    T. Gladman, Proc. R. Soc. Lond. A 294, 298 (1966).CrossRefGoogle Scholar
  29. 29.
    B. Garbarz and F. Pickering, Mater. Sci. Technol. 4, 967 (1988).CrossRefGoogle Scholar
  30. 30.
    K.-T. Park, S.Y. Han, D.H. Shin, Y.-K. Lee, K.J. Lee, and K.S. Lee, ISIJ Int. 44, 1057 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Hong KongHong KongPeople’s Republic of China
  2. 2.Shenzhen Institute of Research and InnovationUniversity of Hong KongShenzhenPeople’s Republic of China

Personalised recommendations