pp 1–12 | Cite as

In Situ High-Cycle Fatigue Reveals Importance of Grain Boundary Structure in Nanocrystalline Cu-Zr

  • Jennifer D. Schuler
  • Christopher M. Barr
  • Nathan M. Heckman
  • Guild Copeland
  • Brad L. Boyce
  • Khalid Hattar
  • Timothy J. RupertEmail author
Deformation and Transitions at Grain Boundaries


Nanocrystalline metals typically have high fatigue strengths but low resistance to crack propagation. Amorphous intergranular films are disordered grain boundary complexions that have been shown to delay crack nucleation and slow crack propagation during monotonic loading by diffusing grain boundary strain concentrations, which suggests they may also be beneficial for fatigue properties. To probe this hypothesis, in situ transmission electron microscopy fatigue cycling is performed on Cu-1 at.% Zr thin films thermally treated to have either only ordered grain boundaries or amorphous intergranular films. The sample with only ordered grain boundaries experienced grain coarsening at crack initiation followed by unsteady crack propagation and extensive nanocracking, whereas the sample containing amorphous intergranular films had no grain coarsening at crack initiation followed by steady crack propagation and distributed plastic activity. Microstructural design for control of these behaviors through simple thermal treatments can allow for the improvement of nanocrystalline metal fatigue toughness.



JDS and TJR were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Award DE-SC0014232, and the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. BLB, KH, CMB, and NMH were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division, under FWP 18-013170. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under Contract DE-SC0014664. TEM work was performed at the UC Irvine Materials Research Institute (IMRI). SEM and FIB work was performed at the UC Irvine Materials Research Institute (IMRI) using instrumentation funded in part by the National Science Foundation Center for Chemistry at the Space-Time Limit (CHE-0802913). Additional FIB and TEM work was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under Contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or of the U.S. government.

Supplementary material

11837_2019_3361_MOESM1_ESM.pdf (529 kb)
Supplementary material 1 (PDF 529 kb)


  1. 1.
    K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, and C.C. Koch, Appl. Phys. Lett. 87, 091904 (2005).CrossRefGoogle Scholar
  2. 2.
    C.C. Koch, K.M. Youssef, R.O. Scattergood, and K.L. Murty, Adv. Eng. Mater. 7, 787 (2005).CrossRefGoogle Scholar
  3. 3.
    T.J. Rupert and C.A. Schuh, Acta Mater. 58, 4137 (2010).CrossRefGoogle Scholar
  4. 4.
    R.O. Ritchie, Int. J. Fracture 100, 55 (1999).CrossRefGoogle Scholar
  5. 5.
    T. Hanlon, E.D. Tabachnikova, and S. Suresh, Int. J. Fatigue 27, 1147 (2005).CrossRefGoogle Scholar
  6. 6.
    T. Hanlon, Y.N. Kwon, and S. Suresh, Scr. Mater. 49, 675 (2003).CrossRefGoogle Scholar
  7. 7.
    T.A. Furnish, D.C. Bufford, F. Ren, A. Mehta, K. Hattar, and B.L. Boyce, Scr. Mater. 143, 15 (2018).CrossRefGoogle Scholar
  8. 8.
    T.A. Furnish, A. Mehta, D. Van Campen, D.C. Bufford, K. Hattar, and B.L. Boyce, J. Mater. Sci. 52, 46 (2017).CrossRefGoogle Scholar
  9. 9.
    R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein, Acta Mater. 59, 1141 (2011).CrossRefGoogle Scholar
  10. 10.
    M.D. Sangid, Int. J. Fatigue 57, 58 (2013).CrossRefGoogle Scholar
  11. 11.
    H.A. Padilla and B.L. Boyce, Exp. Mech. 50, 5 (2010).CrossRefGoogle Scholar
  12. 12.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
  13. 13.
    F. Mompiou, M. Legros, A. Boé, M. Coulombier, J.P. Raskin, and T. Pardoen, Acta Mater. 61, 205 (2013).CrossRefGoogle Scholar
  14. 14.
    K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Mater. 51, 387 (2003).CrossRefGoogle Scholar
  15. 15.
    D. Gianola, B. Mendis, X. Cheng, and K. Hemker, Mater. Sci. Eng. A 483, 637 (2008).CrossRefGoogle Scholar
  16. 16.
    L. Wang, T. Xin, D. Kong, X. Shu, Y. Chen, H. Zhou, J. Teng, Z. Zhang, J. Zou, and X.D. Han, Scr. Mater. 134, 95 (2017).CrossRefGoogle Scholar
  17. 17.
    Z.X. Wu, Y.W. Zhang, M.H. Jhon, and D.J. Srolovitz, Acta Mater. 61, 5807 (2013).CrossRefGoogle Scholar
  18. 18.
    P. Liu, S.C. Mao, L.H. Wang, X.D. Han, and Z. Zhang, Scr. Mater. 64, 343 (2011).CrossRefGoogle Scholar
  19. 19.
    S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).CrossRefGoogle Scholar
  20. 20.
    G. Palumbo, S.J. Thorpe, and K.T. Aust, Scr. Met. Mater. 24, 1347 (1990).CrossRefGoogle Scholar
  21. 21.
    A. Khalajhedayati, Z. Pan, and T.J. Rupert, Nat. Commun. 7, 10802 (2016).CrossRefGoogle Scholar
  22. 22.
    Z. Pan and T.J. Rupert, Acta Mater. 89, 205 (2015).CrossRefGoogle Scholar
  23. 23.
    A. Khalajhedayati and T.J. Rupert, JOM 67, 2788 (2015).CrossRefGoogle Scholar
  24. 24.
    L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, and S.E. Mick, Microsc. Res. Tech. 72, 208 (2009).CrossRefGoogle Scholar
  25. 25.
    L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S.X. Mao, Nature 512, 177 (2014).CrossRefGoogle Scholar
  26. 26.
    D.C. Bufford, D. Stauffer, W.M. Mook, S.A. Syed Asif, B.L. Boyce, and K. Hattar, Nano Lett. 16, 4946 (2016).CrossRefGoogle Scholar
  27. 27.
    X.K. Zhu, Intl. J. Press. Vess. Pip. 156, 40 (2017).CrossRefGoogle Scholar
  28. 28.
    V. Samaeeaghmiyoni, H. Idrissi, J. Groten, R. Schwaiger, and D. Schryvers, Micron 94, 66 (2017).CrossRefGoogle Scholar
  29. 29.
    K. Hattar, D.C. Bufford, and D.L. Buller, Nucl. Instrum. Methods Phys. Res. Sect. B 338, 56 (2014).CrossRefGoogle Scholar
  30. 30.
    S.K. Lin, Y.L. Lee, and M.W. Lu, Int. J. Fatigue 23, 75 (2001).CrossRefGoogle Scholar
  31. 31.
    R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt, Acta Mater. 51, 1937 (2003).CrossRefGoogle Scholar
  32. 32.
    C.M. Park and J.A. Bain, J. Appl. Phys. 91, 6830 (2002).CrossRefGoogle Scholar
  33. 33.
    J.D. Schuler and T.J. Rupert, Acta Mater. 140, 196 (2017).CrossRefGoogle Scholar
  34. 34.
    Q. Jin, D.S. Wilkinson, and G.C. Weatherly, J. Eur. Ceram. Soc. 18, 2281 (1998).CrossRefGoogle Scholar
  35. 35.
    J.D. Schuler, O.K. Donaldson, and T.J. Rupert, Scr. Mater. 154, 49 (2018).CrossRefGoogle Scholar
  36. 36.
    C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
  37. 37.
    Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, and W.O. Soboyejo, Metall. Mater. Trans. A 39, 1145 (2008).CrossRefGoogle Scholar
  38. 38.
    D. Farkas, M. Willemann, and B. Hyde, Phys. Rev. Lett. 94, 165502 (2005).CrossRefGoogle Scholar
  39. 39.
    R.O. Ritchie, Mater. Sci. Eng., A 103, 15 (1988).CrossRefGoogle Scholar
  40. 40.
    J.K. Shang and R.O. Ritchie, Metall. Trans. A 20, 897 (1989).CrossRefGoogle Scholar
  41. 41.
    R. Ramachandramoorthy, R. Bernal, and H.D. Espinosa, ACS Nano 9, 4675 (2015).CrossRefGoogle Scholar
  42. 42.
    Z. Liu, D. Yu, J. Tang, X. Chen, and X. Wang, Int. J. Press. Vess. Pip. 168, 11 (2018).CrossRefGoogle Scholar
  43. 43.
    M.D. Thouless, J. Am. Ceram. Soc. 71, 408 (1988).CrossRefGoogle Scholar
  44. 44.
    A. Vinogradov, J. Mater. Sci. 42, 1797 (2007).CrossRefGoogle Scholar
  45. 45.
    R. Pippan and A. Hohenwarter, Fatigue Fract. Eng. Mater. Struct. 40, 471 (2017).CrossRefGoogle Scholar
  46. 46.
    C. Laird and G. Smith, Philos. Mag. 7, 847 (1962).CrossRefGoogle Scholar
  47. 47.
    J. Xie, X. Wu, and Y. Hong, Scr. Mater. 57, 5 (2007).CrossRefGoogle Scholar
  48. 48.
    K. Tanaka, Y. Nakai, and M. Yamashita, Int. J. Fracture 17, 519 (1981).Google Scholar
  49. 49.
    C. Bjerkén and S. Melin, Eng. Frac. Mech. 71, 2215 (2004).CrossRefGoogle Scholar
  50. 50.
    M.Y. Gutkin and I. Ovid’ko, Philos. Mag. Lett. 84, 655 (2004).CrossRefGoogle Scholar
  51. 51.
    S. Suresh, Metall. Trans. A 14, 2375 (1983).CrossRefGoogle Scholar
  52. 52.
    A.M. Gokhale, W.J. Drury, and S. Mishra, in Fractography of Modern Engineering Materials: Composites and Metals, ed. J.E. Masters and L.N. Gilbertson (Philadelphia, PA: ASTM, 1993), p. 3.Google Scholar
  53. 53.
    D. Farkas, H. Van Swygenhoven, and P. Derlet, Phys. Rev. B Condens. Matter 66, 060101 (2002).CrossRefGoogle Scholar
  54. 54.
    M.D. Sangid, G.J. Pataky, H. Sehitoglu, R.G. Rateick, T. Niendorf, and H.J. Maier, Acta Mater. 59, 7340 (2011).CrossRefGoogle Scholar
  55. 55.
    Y. Zhang, G.J. Tucker, and J.R. Trelewicz, Acta Mater. 131, 39 (2017).CrossRefGoogle Scholar
  56. 56.
    R. Liu, Y. Tian, Z. Zhang, X. An, P. Zhang, and Z. Zhang, Sci. Rep. 6, 27433 (2016).CrossRefGoogle Scholar
  57. 57.
    G.Q. Xu and M.J. Demkowicz, Phys. Rev. Lett. 111, 145501 (2013).CrossRefGoogle Scholar
  58. 58.
    T. Leitner, A. Hohenwarter, and R. Pippan, Mater. Sci. Eng. A 646, 294 (2015).CrossRefGoogle Scholar
  59. 59.
    T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast 25, 1655 (2009).CrossRefGoogle Scholar
  60. 60.
    A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Acta Mater. 59, 2437 (2011).CrossRefGoogle Scholar
  61. 61.
    L. Liu, J. Wang, S.K. Gong, and S.X. Mao, Sci. Rep. 4, 4397 (2014).CrossRefGoogle Scholar
  62. 62.
    V. Turlo and T.J. Rupert, Acta Mater. 151, 100 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jennifer D. Schuler
    • 1
    • 2
  • Christopher M. Barr
    • 2
  • Nathan M. Heckman
    • 2
  • Guild Copeland
    • 2
  • Brad L. Boyce
    • 2
  • Khalid Hattar
    • 2
  • Timothy J. Rupert
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Material, Physical, and Chemical SciencesSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations