Advertisement

JOM

pp 1–6 | Cite as

Interface Facilitated Reorientation of Mg Nanolayers in Mg-Nb Nanolaminates

  • Y. ChenEmail author
  • M. Y. Gong
  • S. Shao
  • N. A. Mara
  • J. Wang
Deformation and Transitions at Grain Boundaries
  • 9 Downloads

Abstract

Mg/Nb nanolaminates synthesized through vapor deposition techniques exhibit high flow strength without conventional twinning in Mg. In this work, we investigated the influence of laminated microstructures on deformation mechanisms of Mg nanolayers. Using molecular dynamics simulations, we explored that (0001)-oriented Mg layers transform or re-orient to {10\( \bar{1} \)0}-oriented Mg layers through nucleation and growth of {10\( \bar{1} \)2} twins by atomic shuffling, instead of conventional {10\( \bar{1} \)2} twinning shear. Such a reorientation accommodates in-plane compressive strain and out-of-plane tensile strain when Mg/Nb laminates are subjected to compression parallel to the Mg/Nb interfaces. The nucleation of {10\( \bar{1} \)2} twins is promoted at the Mg/Nb interface due to the structural change associated with the glide of interface dislocations. The growth of {10\( \bar{1} \)2} twins is accomplished through migration of basal–prismatic boundaries via nucleation and glide of one-layer and two-layer disconnections associated with atomic shuffling. The results shed light on improving mechanical properties of hexagonal close-packed metals employing laminated structures.

Notes

Acknowledgements

This work was supported by the Nebraska Center for Energy Sciences Research which is a collaboration between the Nebraska Public Power District (NPPD) and the University of Nebraska-Lincoln (UNL).

References

  1. 1.
    P.G. Partridge, Metall. Rev. 12, 169 (1967).Google Scholar
  2. 2.
    J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
  3. 3.
    M. Barnett, Mater. Sci. Eng. A 464, 8 (2007).CrossRefGoogle Scholar
  4. 4.
    Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Yoshinaga and R. Horiuchi, Trans. Japan Inst. Metals 5, 14 (1964).CrossRefGoogle Scholar
  6. 6.
    A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351 (1969).CrossRefGoogle Scholar
  7. 7.
    V. Vitek and V. Paidar, Dislocations in Solids (2008), vol. 14, p. 439.Google Scholar
  8. 8.
    M. Yoo, Metall. Trans. A 12, 409 (1981).CrossRefGoogle Scholar
  9. 9.
    P. Cizek and M. Barnett, Scripta Mater. 59, 959 (2008).CrossRefGoogle Scholar
  10. 10.
    D. Ando, J. Koike, and Y. Sutou, Mater. Sci. Eng. A 600, 145 (2014).CrossRefGoogle Scholar
  11. 11.
    Q. Yu, J. Wang, Y. Jiang, R.J. McCabe, N. Li, and C.N. Tomé, Acta Mater. 77, 28 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Jain and S. Agnew, Mater. Sci. Eng. A 462, 29 (2007).CrossRefGoogle Scholar
  13. 13.
    A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plast. 27, 688 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Chapuis and J.H. Driver, Acta Mater. 59, 1986 (2011).CrossRefGoogle Scholar
  15. 15.
    B. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).CrossRefGoogle Scholar
  16. 16.
    K. Hantzsche, J. Bohlen, J. Wendt, K. Kainer, S. Yi, and D. Letzig, Scripta Mater. 63, 725 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Furukawa, Z. Horita, M. Nemoto, R. Valiev, and T. Langdon, Acta Mater. 44, 4619 (1996).CrossRefGoogle Scholar
  18. 18.
    K. Kubota, M. Mabuchi, and K. Higashi, J. Mater. Sci. 34, 2255 (1999).CrossRefGoogle Scholar
  19. 19.
    M. Barnett, Z. Keshavarz, A. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).CrossRefGoogle Scholar
  20. 20.
    T. Al-Samman and X. Li, Mater. Sci. Eng. A 528, 3809 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Acta Mater. 58, 592 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Mater. Trans. 42, 1172 (2001).CrossRefGoogle Scholar
  23. 23.
    E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Acta Mater. 50, 3845 (2002).CrossRefGoogle Scholar
  24. 24.
    X. Shao, Z. Yang, and X. Ma, Acta Mater. 58, 4760 (2010).CrossRefGoogle Scholar
  25. 25.
    A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Wang, R. Hoagland, J. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
  27. 27.
    A. Misra and R. Hoagland, J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
  28. 28.
    A. Misra, M. Verdier, Y. Lu, H. Kung, T. Mitchell, M. Nastasi, and J. Embury, Scripta Mater. 39, 555 (1998).CrossRefGoogle Scholar
  29. 29.
    T.M. Pollock, Science 328, 986 (2010).CrossRefGoogle Scholar
  30. 30.
    J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
  31. 31.
    J. Carpenter, T. Nizolek, R. McCabe, S. Zheng, J. Scott, S. Vogel, N. Mara, T. Pollock, and I. Beyerlein, Mater. Res. Lett. 3, 50 (2015).CrossRefGoogle Scholar
  32. 32.
    B. Ham and X. Zhang, Mater. Sci. Eng. A 528, 2028 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Pathak, N. Velisavljevic, J.K. Baldwin, M. Jain, S. Zheng, N.A. Mara, and I.J. Beyerlein, Sci. Rep. 7, 8264 (2017).CrossRefGoogle Scholar
  34. 34.
    A. Kumar, I.J. Beyerlein, and J. Wang, Appl. Phys. Lett. 105, 071602 (2014).CrossRefGoogle Scholar
  35. 35.
    Y. Chen, S. Shao, X.-Y. Liu, S.K. Yadav, N. Li, N.A. Mara, and J. Wang, Acta Mater. 126, 552 (2017).CrossRefGoogle Scholar
  36. 36.
    S.K. Yadav, S. Shao, Y. Chen, J. Wang, and X.-Y. Liu, J. Mater. Sci. 53, 5733 (2018).CrossRefGoogle Scholar
  37. 37.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003).CrossRefGoogle Scholar
  38. 38.
    S.R. Agnew and Ö. Duygulu, Int. J. Plast. 21, 1161 (2005).CrossRefGoogle Scholar
  39. 39.
    X.-Y. Liu, J.B. Adams, F. Ercolessi, and J.A. Moriarty, Model. Simul. Mater. Sci. Eng. 4, 293 (1996).CrossRefGoogle Scholar
  40. 40.
    G. Ackland and R. Thetford, Philos. Mag. A 56, 15 (1987).CrossRefGoogle Scholar
  41. 41.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
  42. 42.
    S. Nosé, J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
  43. 43.
    R. Zhang, J. Wang, I. Beyerlein, and T. Germann, Scripta Mater. 65, 1022 (2011).CrossRefGoogle Scholar
  44. 44.
    M. Gong, G. Liu, J. Wang, L. Capolungo, and C.N. Tomé, Acta Mater. 155, 187 (2018).CrossRefGoogle Scholar
  45. 45.
    J. Wang, S. Yadav, J. Hirth, C. Tomé, and I. Beyerlein, Mater. Res. Lett. 1, 126 (2013).CrossRefGoogle Scholar
  46. 46.
    B.-Y. Liu, J. Wang, B. Li, L. Lu, X.-Y. Zhang, Z.-W. Shan, J. Li, C.-L. Jia, J. Sun, and E. Ma, Nat. Commun. 5, 3297 (2014).CrossRefGoogle Scholar
  47. 47.
    A. Ostapovets and A. Serra, Philos. Mag. 94, 2827 (2014).CrossRefGoogle Scholar
  48. 48.
    B. Xu, L. Capolungo, and D. Rodney, Scripta Mater. 68, 901 (2013).CrossRefGoogle Scholar
  49. 49.
    J. Wang, L. Liu, C. Tomé, S. Mao, and S. Gong, Mater. Res. Lett. 1, 81 (2013).CrossRefGoogle Scholar
  50. 50.
    C.D. Barrett and H. El Kadiri, Acta Mater. 63, 1 (2014).CrossRefGoogle Scholar
  51. 51.
    J. Hirth, J. Wang, and C. Tomé, Prog. Mater. Sci. 83, 417 (2016).CrossRefGoogle Scholar
  52. 52.
    J. Hirth, R. Pond, R. Hoagland, X.-Y. Liu, and J. Wang, Prog. Mater. Sci. 58, 749 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Mechanical EngineeringUniversity of North Carolina at CharlotteCharlotteUSA
  3. 3.Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations