pp 1–12 | Cite as

Effects of Surface Finishing Procedures on Corrosion Behavior of DMLS-AlSi10Mg_200C Alloy Versus Die-Cast A360.1 Aluminum

  • P. Fathi
  • M. Mohammadi
  • X. Duan
  • A. M. NasiriEmail author
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications


In this study, the impact of surface finishing procedures on the corrosion resistance of an AlSi10Mg_200C alloy manufactured through direct metal laser sintering (DMLS) versus its die cast counterpart was investigated. The as-printed DMLS-AlSi10Mg_200C and as-cast A360.1 alloys were subjected to various surface finishing processes including grinding and sandblasting. The corrosion performance of the surfaces was then evaluated using a potentiodynamic polarization test and electrochemical impedance spectroscopy in an aerated 3.5 wt.% NaCl solution. The results highlighted the better corrosion resistance of DMLS-AlSi10Mg_200C than its cast counterpart with a similar surface finish. The grinding of both as-printed DMLS and as-cast samples was found to initially deteriorate the corrosion performance of the surface by exposing cathodic sites to the electrolyte. However, for longer immersion times and after complete repassivation of the surface, the ground surface showed the highest resistance to the selective attack. The sandblasting process was found to have a detrimental effect on the corrosion resistance of both alloys.



The authors are grateful for the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. RGPIN-2017-04368) for sponsoring this work. M.M. specially thanks the New Brunswick Innovation Foundation (NBIF) (Grant No. RIF2017-071) for providing funding to conduct this research.


  1. 1.
    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
  2. 2.
    D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater. 117, 371 (2016).CrossRefGoogle Scholar
  3. 3.
    B. Li, H. Wang, J. Jie, and Z. Wei, Mater. Des. 32, 1617 (2011).CrossRefGoogle Scholar
  4. 4.
    H. Asgari, C. Baxter, K. Hosseinkhani, and M. Mohammadi, Mater. Sci. Eng. A 707, 148 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, and P. Fino, Electrochim. Acta 206, 346 (2016).CrossRefGoogle Scholar
  6. 6.
    P. Fathi, M. Mohammadi, X. Duan, and A.M. Nasiri, J. Mater. Process. Technol. 259, 1 (2018).CrossRefGoogle Scholar
  7. 7.
    M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, D. Manfredi, P. Fino, S. Biamino, and C. Badini, J. Mater. Process. Tech. 231, 326 (2016).CrossRefGoogle Scholar
  8. 8.
    R.I. Revilla, J. Liang, S. Godet, and I. De Graeve, J. Electrochem. Soc. 164, C27 (2017).CrossRefGoogle Scholar
  9. 9.
    A. Leon and E. Aghion, Mater. Charact. 131, 188 (2017).CrossRefGoogle Scholar
  10. 10.
    ASTM-G5-82, Standard Reference Method for Making Potentiostatic and Potentiodynamic Anodic Polarisation Measurements, Annul B. ASTM Standards Vol. 03.02, Reapproved as ASTM-65-87 and as ASTM-65-94 (1982).Google Scholar
  11. 11.
    K.S. Ferrer and R.G. Kelly, Corrosion 57, 110 (2001).CrossRefGoogle Scholar
  12. 12.
    Z. Szklarska-Smialowska, Corros. Sci. 41, 1743 (1999).CrossRefGoogle Scholar
  13. 13.
    E. Onofre-Bustamante, M.A. Domínguez-Crespo, A.M. Torres-Huerta, A. Olvera-Martínez, J. Genescá-Llongueras, and F.J. Rodríguez-Gómez, J. Solid State Electrochem. 13, 1785 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Jafarzadeh, T. Shahrabi, and M.G. Hosseini, J. Mater. Sci. Technol. 24, 215 (2008).Google Scholar
  15. 15.
    H.-S. Lee, J.K. Singh, M.A. Ismail, and C. Bhattacharya, Metals (Basel) 6, 55 (2016). Scholar
  16. 16.
    R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, and I. Rodríguez, Corros. Sci. 73, 342 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • P. Fathi
    • 1
  • M. Mohammadi
    • 2
  • X. Duan
    • 1
  • A. M. Nasiri
    • 1
    Email author
  1. 1.Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Marine Additive Manufacturing Centre of Excellence (MAMCE)University of New BrunswickFrederictonCanada

Personalised recommendations