Advertisement

JOM

pp 1–11 | Cite as

Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AlSi10Mg Aluminum Alloy Produced by Selective Laser Melting

  • Tao Yang
  • Kuaishe Wang
  • Wen WangEmail author
  • Pai Peng
  • Liying Huang
  • Ke Qiao
  • Yuanyuan Jin
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • 27 Downloads

Abstract

Friction stir processing (FSP) was successfully applied to AlSi10Mg alloy produced by selective laser melting. The microstructure, microhardness, and room-temperature tensile property of the FSPed AlSi10Mg alloy were investigated. The results showed that FSP eliminated the pores of the AlSi10Mg alloy and achieved the microstructural refinement, homogenization, and densification. The grain size was refined from 13.6 μm to 2.3 μm, and relative density increased from 93.3% to 99.6%. An increase in rotation speed led to the enhancement in the density; however, it slightly affected the grain size in this study. The Si particles were homogenously dispersed in the Al matrix, which resulted in uniform distribution of microhardness. FSP led to the increase in the elongation of the AlSi10Mg alloy by 298%, while ultimate tensile strength decreased by only 8%. The Orowan and dislocation strengthening mechanisms were responsible for the loss of strength. FSP has the advantage of acquiring good ductility while maintaining high strength.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants U1760201, 51574192, and 51404180.

References

  1. 1.
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Tang, P.C. Pistorius, S. Narra, and J.L. Beuth, JOM 68, 960 (2016).CrossRefGoogle Scholar
  3. 3.
    K.Q. Le, C. Tang, and C.H. Wong, JOM 70, 2082 (2018).CrossRefGoogle Scholar
  4. 4.
    B. AlMangour, D. Grzesiak, and J.M. Yang, J. Alloys Compd. 728, 424 (2017).CrossRefGoogle Scholar
  5. 5.
    R. Chou, J. Milligan, M. Paliwal, and M. Brochu, JOM 67, 590 (2015).CrossRefGoogle Scholar
  6. 6.
    H. Attar, S.E. Haghighi, D. Kent, X.H. Wu, and M.S. Dargusch, Mater. Sci. Eng. A 705, 385 (2017).CrossRefGoogle Scholar
  7. 7.
    G. Vastola, G. Zhang, Q.X. Pei, and Y.W. Zhang, JOM 68, 2296 (2016).CrossRefGoogle Scholar
  8. 8.
    J.Y. Li, C.J. Chen, J.K. Liao, L. Liu, X.H. Ye, S.Y. Lin, and J.T. Ye, J. Prosthet. Dent. 118, 69 (2017).CrossRefGoogle Scholar
  9. 9.
    C.H. Song, M.K. Zhang, Y.Q. Yang, D. Wang, and J.K. Yu, Mater. Sci. Eng. A 713, 206 (2018).CrossRefGoogle Scholar
  10. 10.
    A.P. Ventura, C.A. Wade, G. Pawlikowski, M. Bayes, M. Watanabe, and W.Z. Misiolek, Metall. Mater. Trans. A 48, 178 (2017).CrossRefGoogle Scholar
  11. 11.
    T.T. Ikeshoji, K. Nakamura, M. Yonehara, K. Imai, and H. Kyogoku, JOM 70, 396 (2018).CrossRefGoogle Scholar
  12. 12.
    E.E. Covarrubias and M. Eshraghi, JOM 70, 336 (2018).CrossRefGoogle Scholar
  13. 13.
    S. Saedi, N.S. Moghaddam, A. Amerinatanzi, M. Elahinia, and H.E. Karaca, Acta Mater. 144, 552 (2018).CrossRefGoogle Scholar
  14. 14.
    H. Asgari, C. Baxter, K. Hosseinkhani, and M. Mohammadi, Mater. Sci. Eng. A 707, 148 (2017).CrossRefGoogle Scholar
  15. 15.
    K. Kempen, L. Thijs, J.V. Humbeeck, and J.P. Kruth, Phys. Proc. 39, 439 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Tang and P.C. Pistorius, Int. J. Fatigue 94, 192 (2017).CrossRefGoogle Scholar
  17. 17.
    L.F. Wang, X.H. Jiang, Y.H. Zhu, Z.S. Ding, X.G. Zhu, J. Sun, and B. Yan, Adv. Mater. Sci. Eng. 2018, 1 (2018).Google Scholar
  18. 18.
    N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Mater. Sci. Eng. A 704, 218 (2017).CrossRefGoogle Scholar
  19. 19.
    N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, Mater. Sci. Eng. A 667, 139 (2016).CrossRefGoogle Scholar
  20. 20.
    U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, and M.M. Attallah, Mater. Des. 105, 212 (2016).CrossRefGoogle Scholar
  21. 21.
    R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005).CrossRefGoogle Scholar
  22. 22.
    K. Yang, W.Y. Li, C.J. Huang, X.W. Yang, and Y.X. Xu, J. Mater. Sci. Technol. 2167, 34 (2018).Google Scholar
  23. 23.
    V.V. Patel, V. Badheka, and A. Kumar, Metallogr. Microstruct. Anal. 278, 5 (2016).Google Scholar
  24. 24.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Metall. Mater. Trans. A 37, 3323 (2006).CrossRefGoogle Scholar
  25. 25.
    G.R. Cui, D.R. Ni, Z.Y. Ma, and S.X. Li, Metall. Mater. Trans. A 45, 5318 (2014).CrossRefGoogle Scholar
  26. 26.
    S. Jana, R.S. Mishra, J.A. Baumann, and G.J. Grant, Metall. Mater. Trans. A 41, 2507 (2010).CrossRefGoogle Scholar
  27. 27.
    ISO 10275:2007, Metallic materials-sheet and strip-determination of tensile strain hardening exponent, International Organization for Standardization (ISO), Switzerland (2007).Google Scholar
  28. 28.
    L. Thijs, K. Kempen, J.P. Kruth, and J.V. Humbeeck, Acta Mater. 61, 1809 (2013).CrossRefGoogle Scholar
  29. 29.
    B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh, Scr. Mater. 141, 45 (2017).CrossRefGoogle Scholar
  30. 30.
    V.V. Patel, V. Badheka, and A. Kumar, Mater. Manuf. Process. 1573, 31 (2016).Google Scholar
  31. 31.
    V.V. Patel, V. Badheka, and A. Kumar, J. Mater. Process. Technol. 68, 240 (2016).Google Scholar
  32. 32.
    P. Wei, Z.Y. Wei, Z. Chen, J. Du, Y.Y. He, J.F. Li, and Y.T. Zhou, Appl. Surf. Sci. 408, 38 (2017).CrossRefGoogle Scholar
  33. 33.
    W.Y. Gan, Z. Zhou, H. Zhang, and T. Peng, Trans. Nonferrous Met. Soc. China 24, 975 (2014).CrossRefGoogle Scholar
  34. 34.
    Z. Zhang and D.L. Chen, Mater. Sci. Eng. A 483–484, 148 (2008).CrossRefGoogle Scholar
  35. 35.
    J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, and M.H. Loretto, Acta Mater. 117, 311 (2016).CrossRefGoogle Scholar
  36. 36.
    L. Weber, M. Kouzeli, C.S. Marchi, and A. Mortensen, Scr. Mater. 41, 549 (1999).CrossRefGoogle Scholar
  37. 37.
    M. Tiryakioǧlu, J. Campbell, and J.T. Staley, Scr. Mater. 49, 873 (2003).CrossRefGoogle Scholar
  38. 38.
    W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q.S. Wei, C.Z. Yan, and Y.S. Shi, Mater. Sci. Eng. A 663, 116 (2016).CrossRefGoogle Scholar
  39. 39.
    M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch, Mater. Charact. 137, 119 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anPeople’s Republic of China
  2. 2.National and Local Joint Engineering Research Center for Functional Materials ProcessingXi’anPeople’s Republic of China

Personalised recommendations