pp 1–8 | Cite as

Microstructure and Mechanical Properties of Ultrasound-Assisted Soldered Al-50 wt.%Si/Al-27 wt.%Si Joints for Automotive Applications

  • Chang Xu
  • Qiang Lang
  • Qian WangEmail author
  • Yunru Chen
  • Jiuchun Yan
  • Shengyong Chen
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications


Hypereutectic Al-27 wt.%Si alloy and hypereutectic Al-50 wt.%Si alloy have been soldered using a Zn-5 wt.%Al interlayer without flux at 420°C in air with ultrasound assistance. The influence of the ultrasound on the migration of Si particles and the microstructure of the solidified Zn-Al-based alloys was investigated. The effect of the distribution of Si particles and the microstructure of the solidified Zn-Al-based alloys on the shear strength is also discussed. As the duration of the ultrasound was increased, the distribution of Si particles became more uniform. The highest average shear strength of the joints reached 70.41 MPa, with fracture mainly occurring at the Si particulate-reinforced Zn-Al-based composite joint.



This research was sponsored by the National Natural Science Foundation of China (Grant No. 51504165), the Foundation of the State Key Lab of Advanced Welding and Joining (Grant No. AWJ-M16-09), the Tianjin Sci. and Tec. Project (Grant Nos. 16JCQNJC02600, 17JCTPJC52800), and the project funded by the China Postdoctoral Science Foundation (Grant No. 2016M601271).

Conflict of interest

No conflict of interest exist regarding the submission of this manuscript, and the manuscript is approved by all authors for publication. I declare on behalf of my coauthors that the work described is original and has not been published previously nor is under consideration for publication elsewhere, in whole or in part. All listed authors have approved the manuscript.


  1. 1.
    N. Kang, P. Coddet, and H. Liao, Mater. Des. 99, 120 (2016).CrossRefGoogle Scholar
  2. 2.
    F. Wang, Z. Zhang, Y. Ma, and Y. Jin, Mater. Lett. 58, 2442.A (2004).CrossRefGoogle Scholar
  3. 3.
    W. Zhang, D. Ding, and P. Gao, Mater. Des. 90, 834 (2016).CrossRefGoogle Scholar
  4. 4.
    A. Urena, M. Escalera, and L. Gil, Compos. Sci. Technol. 60, 613 (2000).CrossRefGoogle Scholar
  5. 5.
    R. Garcia, V. Lopez, E. Bedolla, and A. Manzano, J. Mater. Sci. 38, 2771 (2003).CrossRefGoogle Scholar
  6. 6.
    J. De Salazar, A. Soria, and M. Barrena, Sci. Technol. Weld. Join. 10, 339 (2005).CrossRefGoogle Scholar
  7. 7.
    Y. Zhou, J. Zhang, T. North, and Z. Wang, J. Mater. Sci. 32, 3883 (1997).CrossRefGoogle Scholar
  8. 8.
    H. Uzun, Mater. Des. 28, 1440 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Cui, A. Schulz, K. Schimanski, and H.W. Zoch, J. Mater. Process. Technol. 209, 5220 (2009).CrossRefGoogle Scholar
  10. 10.
    Z. Xu, L. Ma, J. Yan, S. Yang, and S. Du, Compos. Part A 43, 407 (2012).CrossRefGoogle Scholar
  11. 11.
    L. Shi, J. Yan, B. Peng, and Y. Han, Mater. Sci. Eng. A 528, 7084 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Xu, J. Yan, B. Zhang, X. Kong, and S. Yang, Mater. Sci. Eng. A. 415, 80 (2006).CrossRefGoogle Scholar
  13. 13.
    T. Nagaoka, Y. Morisada, M. Fukusumi, and T. Takemoto, J. Mater. Process. Technol. 211, 1534 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Xiao, H. Ji, and M. Li, Mater. Des. 47, 717 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. Xiao, M. Li, and L. Wang, Mater. Des. 73, 42 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Yan, H. Xu, Z. Xu, L. Ma, and S.Q. Yang, Mater. Sci. Technol. 20, 1489 (2004).CrossRefGoogle Scholar
  17. 17.
    Y. Li, W. Zhao, X. Len, Q. Fu, L. Wang, and J. Yan, Trans. Nonferrous Met. Soc. China 21, 1937 (2011).CrossRefGoogle Scholar
  18. 18.
    J. Yan, Z. Xu, and L. Shi, Mater. Des. 32, 343 (2011).CrossRefGoogle Scholar
  19. 19.
    X. Jian, H. Xu, T. Meek, and Q. Han, Mater. Lett. 59, 19 (2005).CrossRefGoogle Scholar
  20. 20.
    V. Abramov, O. Abramov, and V. Bulgakov, Mater. Lett. 37, 27 (1998).CrossRefGoogle Scholar
  21. 21.
    Z. Xu, J. Yan, W. Chen, and S. Yang, Mater. Lett. 62, 2615 (2008).CrossRefGoogle Scholar
  22. 22.
    S.O. Catarino, G. Minas, and J.M. Miranda, Ultrasonics 69, 47 (2016).CrossRefGoogle Scholar
  23. 23.
    H. Fredriksson and U. Åkerlind, Solidification and crystallization processing in metals and alloys (New York: Wiley, 2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Chang Xu
    • 1
  • Qiang Lang
    • 1
  • Qian Wang
    • 1
    • 2
    Email author
  • Yunru Chen
    • 1
  • Jiuchun Yan
    • 2
  • Shengyong Chen
    • 3
  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.State Key Lab of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  3. 3.School of Computer Science and EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations