Structures and Mechanical Properties of Al-Al2Cu Interfaces
- 73 Downloads
Abstract
Al-Cu eutectic composites are composed of α-Al and θ-Al2Cu phases. Al-Al2Cu interfaces play a crucial role in determining the deformation modes and mechanical properties of nanoscale Al-Cu composites. In this work, we studied the structures and properties of the \( \left( {110} \right)_{{{\text{Al}}_{ 2} {\text{Cu}}}} \left\| {\left( {111} \right)_{\text{Al}} } \right. \) interface and elucidated corresponding plastic deformation mechanisms by using atomistic simulations. The \( \left( {110} \right)_{{{\text{Al}}_{ 2} {\text{Cu}}}} \left\| {\left( {111} \right)_{\text{Al}} } \right. \) interface comprises three sets of Shockley partial dislocations that divide the interface into three types of coherent structures. The interface exhibits isotropic, low shear resistance corresponding to the easy gliding and threefold symmetry of interface dislocations. Under mechanical straining parallel to the interface, unusual slips occur on \( \left\{ {011} \right\}_{{{\text{Al}}_{ 2} {\text{Cu}}}} \) planes. Such an unexpected shear mode in Al2Cu phase is ascribed to the slip continuity across the Al-Al2Cu interface and the dislocations deposited at Al-Al2Cu interfaces.
Notes
Acknowledgements
This research is sponsored by the DOE, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0016808. The authors also thank Dr. Qing Zhou and Ms. Lin Chen for valuable discussion while visiting UNL. Atomistic simulations were conducted at the Holland Computing Center (HCC), a high-performance computing resource for the University of Nebraska System.
References
- 1.J.M. Park, N. Mattern, U. Kühn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim, J. Mater. Res. 24, 2605 (2009).CrossRefGoogle Scholar
- 2.J. Park, K. Kim, D. Kim, N. Mattern, R. Li, G. Liu, and J. Eckert, Intermetallics 18, 1829 (2010).CrossRefGoogle Scholar
- 3.X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe, Acta Mater. 95, 74 (2015).CrossRefGoogle Scholar
- 4.M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).CrossRefGoogle Scholar
- 5.X. Li, Z. Ren, Y. Fautrelle, Y. Zhang, and C. Esling, Acta Mater. 58, 1403 (2010).CrossRefGoogle Scholar
- 6.S.J. Wang, G. Liu, J. Wang, and A. Misra, Mater. Charact. 142, 170 (2018).CrossRefGoogle Scholar
- 7.S.J. Wang, G. Liu, D.Y. Xie, Q. Lei, B.P. Ramakrishnan, J. Mazumder, J. Wang, and A. Misra, Acta Mater. 156, 52 (2018).CrossRefGoogle Scholar
- 8.M. Aravind, P. Yu, M.Y. Yau, and D.H.L. Ng, Mater. Sci. Eng., A 380, 384 (2004).CrossRefGoogle Scholar
- 9.E.F. Prados, V.L. Sordi, and M. Ferrante, Acta Mater. 61, 115 (2013).CrossRefGoogle Scholar
- 10.A.A. Csontos and E.A. Starke, Int. J. Plast 21, 1097 (2005).CrossRefGoogle Scholar
- 11.A. Meetsma, J.L. De Boer, and S. Van Smaalen, J. Solid State Chem. 83, 370 (1989).CrossRefGoogle Scholar
- 12.Q. Zhou, J. Wang, A. Misra, P. Huang, F. Wang, and K. Xu, Int. J. Plast. 87, 100 (2016).CrossRefGoogle Scholar
- 13.A. Yanilkin, V. Krasnikov, A.Y. Kuksin, and A. Mayer, Int. J. Plast. 55, 94 (2014).CrossRefGoogle Scholar
- 14.T. Chanda and G.S. Murty, J. Mater. Sci. 27, 5931 (1992).CrossRefGoogle Scholar
- 15.M. Ignat, R. Bonnet, D. Caillard, and J.L. Martin, Phys. Status Solidi A 49, 675 (1978).CrossRefGoogle Scholar
- 16.G. Davies and A. Hellawell, Philos. Mag.: J. Theor. Exp. Appl. Phys. 22, 1255 (1970).CrossRefGoogle Scholar
- 17.W. Zhu, Z. Ren, W. Ren, Y. Zhong, and K. Deng, Mater. Sci. Eng., A 441, 181 (2006).CrossRefGoogle Scholar
- 18.B. Cantor and G.A. Chadwick, J. Cryst. Growth 23, 12 (1974).CrossRefGoogle Scholar
- 19.V.T. Witusiewicz, U. Hecht, S. Rex, and J. Cryst, Growth 372, 57 (2013).CrossRefGoogle Scholar
- 20.K.G. Russell and M. Ashby, Acta Metall. 18, 891 (1970).CrossRefGoogle Scholar
- 21.R. Bonnet and M. Loubradou, Phys. Status Solidi A 194, 173 (2002).CrossRefGoogle Scholar
- 22.C. Hadj Belgacem, M. Fnaiech, M. Loubradou, S. Lay, and R. Bonnet, Phys. Status Solidi A 189, 183 (2002).CrossRefGoogle Scholar
- 23.K. Gao, S. Li, L. Xu, and H. Fu, J. Cryst. Growth 394, 89 (2014).CrossRefGoogle Scholar
- 24.J. Wang and A. Misra, Curr. Opin. Solid St. Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
- 25.I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015).CrossRefGoogle Scholar
- 26.X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, and Y. Zhu, Acta Mater. 116, 43 (2016).CrossRefGoogle Scholar
- 27.T. Shimokawa, T. Oguro, M. Tanaka, K. Higashida, and T. Ohashi, Mater. Sci. Eng., A 598, 68 (2014).CrossRefGoogle Scholar
- 28.J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
- 29.J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).CrossRefGoogle Scholar
- 30.J. Wang, A. Misra, R. Hoagland, and J. Hirth, Acta Mater. 60, 1503 (2012).CrossRefGoogle Scholar
- 31.X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).CrossRefGoogle Scholar
- 32.A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng., A 635, 6 (2015).CrossRefGoogle Scholar
- 33.N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scripta Mater. 63, 363 (2010).CrossRefGoogle Scholar
- 34.R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).CrossRefGoogle Scholar
- 35.S. Shao, J. Wang, I.J. Beyerlein, and A. Misra, Acta Mater. 98, 206 (2015).CrossRefGoogle Scholar
- 36.I.J. Beyerlein, J. Wang, and R. Zhang, Acta Mater. 61, 7488 (2013).CrossRefGoogle Scholar
- 37.F. Apostol and Y. Mishin, Phys. Rev. B 83, 054116 (2011).CrossRefGoogle Scholar
- 38.N. Fribourg-Blanc, M. Dupeux, G. Guenin, and R. Bonnet, J. Appl. Crystallogr. 12, 151 (1979).CrossRefGoogle Scholar
- 39.Q. Zhou, J. Wang, A. Misra, P. Huang, F. Wang, and K. Xu, NPJ Comput. Mater. 3, 24 (2017).CrossRefGoogle Scholar
- 40.J. Wang, R. Zhang, C. Zhou, I.J. Beyerlein, and A. Misra, J. Mater. Res. 28, 1646 (2013).CrossRefGoogle Scholar
- 41.S. Shao, J. Wang, and A. Misra, J. Appl. Phys. 116, 023508 (2014).CrossRefGoogle Scholar
- 42.S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Sci. Rep. 3, 2448 (2013).CrossRefGoogle Scholar
- 43.M. Ignat and F. Durand, Scripta Metall. 10, 623 (1976).CrossRefGoogle Scholar
- 44.W. Clark, R. Wagoner, Z. Shen, T. Lee, I. Robertson, and H. Birnbaum, Scripta Metall. Mater. 26, 203 (1992).CrossRefGoogle Scholar
- 45.J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).CrossRefGoogle Scholar
- 46.J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Hoboken: Wiley, 1982).zbMATHGoogle Scholar