pp 1–9 | Cite as

Structures and Mechanical Properties of Al-Al2Cu Interfaces

  • Guisen Liu
  • Mingyu Gong
  • Dongyue Xie
  • Jian WangEmail author
Deformation and Transitions at Grain Boundaries


Al-Cu eutectic composites are composed of α-Al and θ-Al2Cu phases. Al-Al2Cu interfaces play a crucial role in determining the deformation modes and mechanical properties of nanoscale Al-Cu composites. In this work, we studied the structures and properties of the \( \left( {110} \right)_{{{\text{Al}}_{ 2} {\text{Cu}}}} \left\| {\left( {111} \right)_{\text{Al}} } \right. \) interface and elucidated corresponding plastic deformation mechanisms by using atomistic simulations. The \( \left( {110} \right)_{{{\text{Al}}_{ 2} {\text{Cu}}}} \left\| {\left( {111} \right)_{\text{Al}} } \right. \) interface comprises three sets of Shockley partial dislocations that divide the interface into three types of coherent structures. The interface exhibits isotropic, low shear resistance corresponding to the easy gliding and threefold symmetry of interface dislocations. Under mechanical straining parallel to the interface, unusual slips occur on \( \left\{ {011} \right\}_{{{\text{Al}}_{ 2} {\text{Cu}}}} \) planes. Such an unexpected shear mode in Al2Cu phase is ascribed to the slip continuity across the Al-Al2Cu interface and the dislocations deposited at Al-Al2Cu interfaces.



This research is sponsored by the DOE, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0016808. The authors also thank Dr. Qing Zhou and Ms. Lin Chen for valuable discussion while visiting UNL. Atomistic simulations were conducted at the Holland Computing Center (HCC), a high-performance computing resource for the University of Nebraska System.


  1. 1.
    J.M. Park, N. Mattern, U. Kühn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim, J. Mater. Res. 24, 2605 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Park, K. Kim, D. Kim, N. Mattern, R. Li, G. Liu, and J. Eckert, Intermetallics 18, 1829 (2010).CrossRefGoogle Scholar
  3. 3.
    X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe, Acta Mater. 95, 74 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).CrossRefGoogle Scholar
  5. 5.
    X. Li, Z. Ren, Y. Fautrelle, Y. Zhang, and C. Esling, Acta Mater. 58, 1403 (2010).CrossRefGoogle Scholar
  6. 6.
    S.J. Wang, G. Liu, J. Wang, and A. Misra, Mater. Charact. 142, 170 (2018).CrossRefGoogle Scholar
  7. 7.
    S.J. Wang, G. Liu, D.Y. Xie, Q. Lei, B.P. Ramakrishnan, J. Mazumder, J. Wang, and A. Misra, Acta Mater. 156, 52 (2018).CrossRefGoogle Scholar
  8. 8.
    M. Aravind, P. Yu, M.Y. Yau, and D.H.L. Ng, Mater. Sci. Eng., A 380, 384 (2004).CrossRefGoogle Scholar
  9. 9.
    E.F. Prados, V.L. Sordi, and M. Ferrante, Acta Mater. 61, 115 (2013).CrossRefGoogle Scholar
  10. 10.
    A.A. Csontos and E.A. Starke, Int. J. Plast 21, 1097 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Meetsma, J.L. De Boer, and S. Van Smaalen, J. Solid State Chem. 83, 370 (1989).CrossRefGoogle Scholar
  12. 12.
    Q. Zhou, J. Wang, A. Misra, P. Huang, F. Wang, and K. Xu, Int. J. Plast. 87, 100 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Yanilkin, V. Krasnikov, A.Y. Kuksin, and A. Mayer, Int. J. Plast. 55, 94 (2014).CrossRefGoogle Scholar
  14. 14.
    T. Chanda and G.S. Murty, J. Mater. Sci. 27, 5931 (1992).CrossRefGoogle Scholar
  15. 15.
    M. Ignat, R. Bonnet, D. Caillard, and J.L. Martin, Phys. Status Solidi A 49, 675 (1978).CrossRefGoogle Scholar
  16. 16.
    G. Davies and A. Hellawell, Philos. Mag.: J. Theor. Exp. Appl. Phys. 22, 1255 (1970).CrossRefGoogle Scholar
  17. 17.
    W. Zhu, Z. Ren, W. Ren, Y. Zhong, and K. Deng, Mater. Sci. Eng., A 441, 181 (2006).CrossRefGoogle Scholar
  18. 18.
    B. Cantor and G.A. Chadwick, J. Cryst. Growth 23, 12 (1974).CrossRefGoogle Scholar
  19. 19.
    V.T. Witusiewicz, U. Hecht, S. Rex, and J. Cryst, Growth 372, 57 (2013).CrossRefGoogle Scholar
  20. 20.
    K.G. Russell and M. Ashby, Acta Metall. 18, 891 (1970).CrossRefGoogle Scholar
  21. 21.
    R. Bonnet and M. Loubradou, Phys. Status Solidi A 194, 173 (2002).CrossRefGoogle Scholar
  22. 22.
    C. Hadj Belgacem, M. Fnaiech, M. Loubradou, S. Lay, and R. Bonnet, Phys. Status Solidi A 189, 183 (2002).CrossRefGoogle Scholar
  23. 23.
    K. Gao, S. Li, L. Xu, and H. Fu, J. Cryst. Growth 394, 89 (2014).CrossRefGoogle Scholar
  24. 24.
    J. Wang and A. Misra, Curr. Opin. Solid St. Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
  25. 25.
    I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015).CrossRefGoogle Scholar
  26. 26.
    X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, and Y. Zhu, Acta Mater. 116, 43 (2016).CrossRefGoogle Scholar
  27. 27.
    T. Shimokawa, T. Oguro, M. Tanaka, K. Higashida, and T. Ohashi, Mater. Sci. Eng., A 598, 68 (2014).CrossRefGoogle Scholar
  28. 28.
    J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
  29. 29.
    J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).CrossRefGoogle Scholar
  30. 30.
    J. Wang, A. Misra, R. Hoagland, and J. Hirth, Acta Mater. 60, 1503 (2012).CrossRefGoogle Scholar
  31. 31.
    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).CrossRefGoogle Scholar
  32. 32.
    A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng., A 635, 6 (2015).CrossRefGoogle Scholar
  33. 33.
    N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scripta Mater. 63, 363 (2010).CrossRefGoogle Scholar
  34. 34.
    R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).CrossRefGoogle Scholar
  35. 35.
    S. Shao, J. Wang, I.J. Beyerlein, and A. Misra, Acta Mater. 98, 206 (2015).CrossRefGoogle Scholar
  36. 36.
    I.J. Beyerlein, J. Wang, and R. Zhang, Acta Mater. 61, 7488 (2013).CrossRefGoogle Scholar
  37. 37.
    F. Apostol and Y. Mishin, Phys. Rev. B 83, 054116 (2011).CrossRefGoogle Scholar
  38. 38.
    N. Fribourg-Blanc, M. Dupeux, G. Guenin, and R. Bonnet, J. Appl. Crystallogr. 12, 151 (1979).CrossRefGoogle Scholar
  39. 39.
    Q. Zhou, J. Wang, A. Misra, P. Huang, F. Wang, and K. Xu, NPJ Comput. Mater. 3, 24 (2017).CrossRefGoogle Scholar
  40. 40.
    J. Wang, R. Zhang, C. Zhou, I.J. Beyerlein, and A. Misra, J. Mater. Res. 28, 1646 (2013).CrossRefGoogle Scholar
  41. 41.
    S. Shao, J. Wang, and A. Misra, J. Appl. Phys. 116, 023508 (2014).CrossRefGoogle Scholar
  42. 42.
    S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Sci. Rep. 3, 2448 (2013).CrossRefGoogle Scholar
  43. 43.
    M. Ignat and F. Durand, Scripta Metall. 10, 623 (1976).CrossRefGoogle Scholar
  44. 44.
    W. Clark, R. Wagoner, Z. Shen, T. Lee, I. Robertson, and H. Birnbaum, Scripta Metall. Mater. 26, 203 (1992).CrossRefGoogle Scholar
  45. 45.
    J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).CrossRefGoogle Scholar
  46. 46.
    J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Hoboken: Wiley, 1982).zbMATHGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations