pp 1–9 | Cite as

Effect of Prior Austenite Grain Size on Hole Expansion Ratio of Quenching and Partitioning Processed Medium-Mn Steel

  • Ji Hoon Kim
  • Sea Woong Lee
  • Kyooyoung Lee
  • Jin-Kyung Kim
  • Dong-Woo SuhEmail author
Advanced High-Strength Steels for Automobiles


The effect of the prior austenite grain size (PAGS) on the tensile properties and hole expansion ratio (HER) has been investigated. Starting from different PAGS values (4.7 μm and 15.2 μm) obtained by controlling the austenitizing temperature, microstructure consisting of martensite and austenite (Vγ of 0.09–0.18) was produced by the quenching and partitioning process. Increasing Vγ had a beneficial influence on the tensile elongation regardless of the PAGS, but deteriorated the HER. However, larger PGAS alleviated the degradation of the HER. The major influence of a larger PAGS on the HER results from the decreased population of interface between neighboring martensite in the shear-affected zone, because that interface is revealed to be a major site for void formation during hole expansion testing.



The authors gratefully acknowledge support from POSCO Technical Research Laboratories (South Korea).


  1. 1.
    L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang, Scr. Mater. 150, 1 (2018).CrossRefGoogle Scholar
  2. 2.
    E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman, Acta Mater. 113, 124–139 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Cho, E.J. Seo, and B.C. De Cooman, Scr. Mater. 123, 69 (2016).CrossRefGoogle Scholar
  4. 4.
    E.J. Seo, L. Cho, and B.C. De Cooman, Metall. Mater. Trans. A 45, 4022 (2014).CrossRefGoogle Scholar
  5. 5.
    B.C. De Cooman, S.J. Lee, S. Shin, E.J. Seo, and J.G. Speer, Metall. Mater. Trans. A 48, 39 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han, and N. Kheradmand, Mater. Sci. Eng., A 725, 341 (2018).CrossRefGoogle Scholar
  7. 7.
    D.T. Pierce, D.R. Coughlin, K.D. Clarke, E. De Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke, Acta Mater. 151, 454 (2018).CrossRefGoogle Scholar
  8. 8.
    E.J. Seo, L. Cho, and B.C. De Cooman, Metall. Mater. Trans. A 46, 27 (2015).CrossRefGoogle Scholar
  9. 9.
    J.H. Kim, E.J. Seo, M.-H. Kwon, S. Kang, and B.C. De Cooman, Mater. Sci. Eng., A 729, 276 (2018).CrossRefGoogle Scholar
  10. 10.
    N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Acta Mater. 53, 5439 (2005).CrossRefGoogle Scholar
  11. 11.
    B. Holmes and D. Dyson, J. Iron Steel Inst. 208, 469 (1970).Google Scholar
  12. 12.
    J.J. Lee, S.W. Jung, and K.S. Yoo, Anal. Sci. 7, 493 (1994).Google Scholar
  13. 13.
    H.-S. Yang and H.K.D.H. Bhadeshia, Scr. Mater. 60, 493 (2009).CrossRefGoogle Scholar
  14. 14.
    D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Mater. Sci. Eng., A 438, 25 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Standard, E112, 2010, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken (2010).
  16. 16.
    Y. Toji, G. Miyamoto, and D. Raabe, Acta Mater. 86, 137 (2015).CrossRefGoogle Scholar
  17. 17.
    Y.J. Li, D. Ponge, P. Choi, and D. Raabe, Scr. Mater. 96, 13 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, and B. Hwang, Acta Mater. 122, 199 (2017).CrossRefGoogle Scholar
  19. 19.
    Y.J. Li, D. Ponge, P. Choi, and D. Raabe, Ultramicroscopy 159, 240 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe, Acta Mater. 60, 2790 (2012).CrossRefGoogle Scholar
  21. 21.
    G. Krauss, Mater. Sci. Eng., A 273-275, 40 (1999).CrossRefGoogle Scholar
  22. 22.
    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98, 81 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Miller, P. Beaven, S. Brenner, and G. Smith, Metall. Trans. A 14, 1021 (1983).CrossRefGoogle Scholar
  24. 24.
    S. Morito, H. Yoshida, T. Maki, and X. Huang, Mater. Sci. Eng., A 438–440, 237 (2006).CrossRefGoogle Scholar
  25. 25.
    C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Scr. Mater. 58, 492 (2008).CrossRefGoogle Scholar
  26. 26.
    T. Simm, L. Sun, S. McAdam, P. Hill, M. Rawson, and K. Perkins, Materials 10, 730 (2017).CrossRefGoogle Scholar
  27. 27.
    S. Matsuda, T. Inoue, H. Mimura, and Y. Okamura, Climax Molybdenum Development Company Ltd. pp. 45–66 (1971).Google Scholar
  28. 28.
    S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, Acta Mater. 54, 5323 (2006).CrossRefGoogle Scholar
  29. 29.
    C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and K. Sun, Mater. Sci. Eng., A 534, 339 (2012).CrossRefGoogle Scholar
  30. 30.
    B.S. Levy and C.J. Van Tyne, J. Mater. Eng. Perform. 21, 1205 (2012).CrossRefGoogle Scholar
  31. 31.
    M. Mukherjee, S. Tiwari, and B. Bhattacharya, Int. J. Miner., Metall. Mater. 25, 199 (2018).CrossRefGoogle Scholar
  32. 32.
    K.-I. Sugimoto, A. Nagasaka, M. Kobayashi, and S.-I. Hashimoto, ISIJ Int. 39, 56 (1999).CrossRefGoogle Scholar
  33. 33.
    K.-I. Sugimoto, T. Iida, J. Sakaguchi, and T. Kashima, ISIJ Int. 40, 902 (2000).CrossRefGoogle Scholar
  34. 34.
    A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, and A. Pichler, Steel Res. Int. 80, 71 (2009).Google Scholar
  35. 35.
    K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, ISIJ Int. 44, 603 (2004).CrossRefGoogle Scholar
  36. 36.
    I. Pushkareva, S. Allain, C. Scott, A. Redjaïmia, and A. Moulin, ISIJ Int. 55, 2237 (2015).CrossRefGoogle Scholar
  37. 37.
    J. Lee, S.-J. Lee, and B.C. De Cooman, Mater. Sci. Eng., A 536, 231 (2012).CrossRefGoogle Scholar
  38. 38.
    B.S. Levy, M. Gibbs, and C.J. Van Tyne, Metall. Mater. Trans. A 44, 3635 (2013).CrossRefGoogle Scholar
  39. 39.
    H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 4th ed., ed. H. Bhadeshia and R. Honeycombe (Oxford: Butterworth-Heinemann, 2017), pp. 135–177.CrossRefGoogle Scholar
  40. 40.
    E.J. Seo, L. Cho, and B.C. De Cooman, Acta Mater. 107, 354 (2016).CrossRefGoogle Scholar
  41. 41.
    N.H. Heo, J.W. Nam, Y.U. Heo, and S.J. Kim, Acta Mater. 61, 4022 (2013).CrossRefGoogle Scholar
  42. 42.
    X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, J. Mater. Sci. 38, 3877 (2003).CrossRefGoogle Scholar
  43. 43.
    R.A. Grange, C.R. Hribal, and L.F. Porter, Metall. Mater. Trans. A 8, 1775 (1977).CrossRefGoogle Scholar
  44. 44.
    T. Ohmura, K. Tsuzaki, and S. Matsuoka, Scr. Mater. 45, 889 (2001).CrossRefGoogle Scholar
  45. 45.
    S. Chatterjee and H. Bhadeshia, Mater. Sci. Technol. 23, 606 (2007).CrossRefGoogle Scholar
  46. 46.
    S. Sadagopan and D. Urban, AISI/DOE technology roadmap program (2003).Google Scholar
  47. 47.
    X. Chen, H. Jiang, Z. Cui, C. Lian, and C. Lu, Procedia Eng. 81, 718 (2014).CrossRefGoogle Scholar
  48. 48.
    S.K. Paul, J. Mater. Eng. Perform. 23, 3610 (2014).CrossRefGoogle Scholar
  49. 49.
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scr. Mater. 68, 321 (2013).CrossRefGoogle Scholar
  50. 50.
    K.-I. Sugimoto, J. Sakaguchi, T. Iida, and T. Kashima, ISIJ Int. 40, 920 (2000).CrossRefGoogle Scholar
  51. 51.
    J.I. Kim, POSTECH GIFT Doctoral Dissertation (2017).Google Scholar
  52. 52.
    Z.Z. Zhao, H.X. Yin, A.M. Zhao, Z.Q. Gong, J.G. He, T.T. Tong, and H.J. Hu, Mater. Sci. Eng., A 613, 8–16 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ji Hoon Kim
    • 1
  • Sea Woong Lee
    • 2
  • Kyooyoung Lee
    • 2
  • Jin-Kyung Kim
    • 3
  • Dong-Woo Suh
    • 1
    Email author
  1. 1.Graduate Institute of Ferrous Technology, Pohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Technical Research LaboratoriesPOSCOGwangyangRepublic of Korea
  3. 3.Department of Energy ScienceSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations